IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i3p675-681.html
   My bibliography  Save this article

Technical Note---A Sampling-Based Approach to Appointment Scheduling

Author

Listed:
  • Mehmet A. Begen

    (Ivey School of Business, University of Western Ontario, London, Ontario N6A 3K7, Canada)

  • Retsef Levi

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139)

  • Maurice Queyranne

    (Sauder School of Business, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada)

Abstract

We consider the problem of appointment scheduling with discrete random durations but under the more realistic assumption that the duration probability distributions are not known and only a set of independent samples is available, e.g., historical data. For a given sequence of appointments (jobs, tasks), the goal is to determine the planned starting time of each appointment such that the expected total underage and overage costs due to the mismatch between allocated and realized durations is minimized. We use the convexity and subdifferential of the objective function of the appointment scheduling problem to determine bounds on the number of independent samples required to obtain a provably near-optimal solution with high probability.

Suggested Citation

  • Mehmet A. Begen & Retsef Levi & Maurice Queyranne, 2012. "Technical Note---A Sampling-Based Approach to Appointment Scheduling," Operations Research, INFORMS, vol. 60(3), pages 675-681, June.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:3:p:675-681
    DOI: 10.1287/opre.1120.1053
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1053
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mehmet A. Begen & Maurice Queyranne, 2011. "Appointment Scheduling with Discrete Random Durations," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 240-257, May.
    2. Federico Sabria & Carlos F. Daganzo, 1989. "Approximate Expressions for Queueing Systems with Scheduled Arrivals and Established Service Order," Transportation Science, INFORMS, vol. 23(3), pages 159-165, August.
    3. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2007. "Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 821-839, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2015. "Appointment Scheduling with Limited Distributional Information," Management Science, INFORMS, vol. 61(2), pages 316-334, February.
    2. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2014. "Sequencing Appointments for Service Systems Using Inventory Approximations," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 251-262, May.
    3. Dongdong Ge & Guohua Wan & Zizhuo Wang & Jiawei Zhang, 2014. "A Note on Appointment Scheduling with Piecewise Linear Cost Functions," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1244-1251, November.
    4. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    5. Khaniyev, Taghi & Kayış, Enis & Güllü, Refik, 2020. "Next-day operating room scheduling with uncertain surgery durations: Exact analysis and heuristics," European Journal of Operational Research, Elsevier, vol. 286(1), pages 49-62.
    6. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    7. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    8. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    9. Qingxia Kong & Chung-Yee Lee & Chung-Piaw Teo & Zhichao Zheng, 2013. "Scheduling Arrivals to a Stochastic Service Delivery System Using Copositive Cones," Operations Research, INFORMS, vol. 61(3), pages 711-726, June.
    10. Wang Chi Cheung & David Simchi-Levi, 2019. "Sampling-Based Approximation Schemes for Capacitated Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 668-692, May.
    11. Mohammad Heydari & Kin Keung Lai & Yanan Fan & Xiaoyang Li, 2022. "A Review of Emergency and Disaster Management in the Process of Healthcare Operation Management for Improving Hospital Surgical Intake Capacity," Mathematics, MDPI, vol. 10(15), pages 1-34, August.
    12. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    13. Yifei Sun & Usha Nandini Raghavan & Vikrant Vaze & Christopher S Hall & Patricia Doyle & Stacey Sullivan Richard & Christoph Wald, 2021. "Stochastic programming for outpatient scheduling with flexible inpatient exam accommodation," Health Care Management Science, Springer, vol. 24(3), pages 460-481, September.
    14. Arden Baxter & Pinar Keskinocak & Mohit Singh, 2023. "Heterogeneous Multi-resource Planning and Allocation Under Stochastic Demand," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 929-951, September.
    15. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    16. Xi Chen & Liu Zhao & Haiming Liang & Kin Keung Lai, 2019. "Matching patients and healthcare service providers: a novel two-stage method based on knowledge rules and OWA-NSGA-II algorithm," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 221-247, January.
    17. Zhou, Shenghai & Li, Debiao & Yin, Yong, 2021. "Coordinated appointment scheduling with multiple providers and patient-and-physician matching cost in specialty care," Omega, Elsevier, vol. 101(C).
    18. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang Chi Cheung & David Simchi-Levi, 2019. "Sampling-Based Approximation Schemes for Capacitated Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 668-692, May.
    2. Yifei Sun & Usha Nandini Raghavan & Vikrant Vaze & Christopher S Hall & Patricia Doyle & Stacey Sullivan Richard & Christoph Wald, 2021. "Stochastic programming for outpatient scheduling with flexible inpatient exam accommodation," Health Care Management Science, Springer, vol. 24(3), pages 460-481, September.
    3. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    4. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2014. "Sequencing Appointments for Service Systems Using Inventory Approximations," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 251-262, May.
    5. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2015. "Appointment Scheduling with Limited Distributional Information," Management Science, INFORMS, vol. 61(2), pages 316-334, February.
    6. Illana Bendavid & Yariv N. Marmor & Boris Shnits, 2018. "Developing an optimal appointment scheduling for systems with rigid standby time under pre-determined quality of service," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 54-77, June.
    7. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    8. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    9. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    10. Gokhan Metan & Aurélie Thiele, 2016. "Protecting the data-driven newsvendor against rare events: a correction-term approach," Computational Management Science, Springer, vol. 13(3), pages 459-482, July.
    11. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    12. Andrew Lim & Brian Rodrigues & Fei Xiao & Yi Zhu, 2004. "Crane scheduling with spatial constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 386-406, April.
    13. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    14. Cong Shi & Weidong Chen & Izak Duenyas, 2016. "Technical Note—Nonparametric Data-Driven Algorithms for Multiproduct Inventory Systems with Censored Demand," Operations Research, INFORMS, vol. 64(2), pages 362-370, April.
    15. Alp Akcay & Bahar Biller & Sridhar Tayur, 2011. "Improved Inventory Targets in the Presence of Limited Historical Demand Data," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 297-309, July.
    16. Retsef Levi & Georgia Perakis & Joline Uichanco, 2015. "The Data-Driven Newsvendor Problem: New Bounds and Insights," Operations Research, INFORMS, vol. 63(6), pages 1294-1306, December.
    17. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    18. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    19. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    20. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:3:p:675-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.