IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v42y2017i3p854-875.html
   My bibliography  Save this article

Fast Approximation Algorithms for the One-Warehouse Multi-Retailer Problem Under General Cost Structures and Capacity Constraints

Author

Listed:
  • Jean-Philippe Gayon

    (University Grenoble Alpes, CNRS, G-SCOP, 38000 Grenoble, France)

  • Guillaume Massonnet

    (Laboratoire LS2N, IMT-Atlantique, 44300 Nantes, France)

  • Christophe Rapine

    (Université de Lorraine, laboratoire LGIPM, Île du Saulcy, 57045 Metz Cedex 01, France)

  • Gautier Stauffer

    (University Grenoble Alpes, CNRS, G-SCOP, 38000 Grenoble, France)

Abstract

We consider a well-studied multi-echelon (deterministic) inventory control problem, known in the literature as the one-warehouse multi-retailer (OWMR) problem. We propose a simple and fast 2-approximation algorithm for this NP-hard problem, by recombining the solutions of single-echelon relaxations at the warehouse and at the retailers. We then show that our approach remains valid under quite general assumptions on the cost structures and under capacity constraints at some retailers. In particular, we present the first approximation algorithms for the OWMR problem with nonlinear holding costs, truckload discount on procurement costs, or with capacity constraints at some retailers. In all cases, the procedure is purely combinatorial and can be implemented to run in low polynomial time.

Suggested Citation

  • Jean-Philippe Gayon & Guillaume Massonnet & Christophe Rapine & Gautier Stauffer, 2017. "Fast Approximation Algorithms for the One-Warehouse Multi-Retailer Problem Under General Cost Structures and Capacity Constraints," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 854-875, August.
  • Handle: RePEc:inm:ormoor:v:42:y:2017:i:3:p:854-875
    DOI: 10.1287/moor.2016.0830
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2016.0830
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2016.0830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gayon, J.-P. & Massonnet, G. & Rapine, C. & Stauffer, G., 2016. "Constant approximation algorithms for the one warehouse multiple retailers problem with backlog or lost-sales," European Journal of Operational Research, Elsevier, vol. 250(1), pages 155-163.
    2. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    3. Leroy B. Schwarz, 1973. "A Simple Continuous Review Deterministic One-Warehouse N-Retailer Inventory Problem," Management Science, INFORMS, vol. 19(5), pages 555-566, January.
    4. Retsef Levi & Robin Roundy & David Shmoys & Maxim Sviridenko, 2008. "A Constant Approximation Algorithm for the One-Warehouse Multiretailer Problem," Management Science, INFORMS, vol. 54(4), pages 763-776, April.
    5. Khouja, Moutaz & Goyal, Suresh, 2008. "A review of the joint replenishment problem literature: 1989-2005," European Journal of Operational Research, Elsevier, vol. 186(1), pages 1-16, April.
    6. Gautier Stauffer, 2012. "Using the economical order quantity formula for inventory control in one‐warehouse multiretailer systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 285-297, April.
    7. Chung-Lun Li & Vernon Ning Hsu & Wen-Qiang Xiao, 2004. "Dynamic Lot Sizing with Batch Ordering and Truckload Discounts," Operations Research, INFORMS, vol. 52(4), pages 639-654, August.
    8. Zuo‐Jun Max Shen & Jia Shu & David Simchi‐Levi & Chung‐Piaw Teo & Jiawei Zhang, 2009. "Approximation algorithms for general one‐warehouse multi‐retailer systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 642-658, October.
    9. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    10. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    11. Robin Roundy, 1985. "98%-Effective Integer-Ratio Lot-Sizing for One-Warehouse Multi-Retailer Systems," Management Science, INFORMS, vol. 31(11), pages 1416-1430, November.
    12. Awi Federgruen & Min Wang, 2015. "Inventory Models with Shelf-Age and Delay-Dependent Inventory Costs," Operations Research, INFORMS, vol. 63(3), pages 701-715, June.
    13. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2006. "Primal-Dual Algorithms for Deterministic Inventory Problems," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 267-284, May.
    14. Awi Federgruen & Michal Tzur, 1999. "Time‐partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot‐sizing problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 463-486, August.
    15. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    16. Retsef Levi & Andrea Lodi & Maxim Sviridenko, 2008. "Approximation Algorithms for the Capacitated Multi-Item Lot-Sizing Problem via Flow-Cover Inequalities," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 461-474, May.
    17. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    18. Mathieu Van Vyve, 2007. "Algorithms for Single-Item Lot-Sizing Problems with Constant Batch Size," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 594-613, August.
    19. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    20. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    21. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautier Stauffer, 2018. "Approximation algorithms for k-echelon extensions of the one warehouse multi-retailer problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 445-473, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    2. Gautier Stauffer, 2018. "Approximation algorithms for k-echelon extensions of the one warehouse multi-retailer problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 445-473, December.
    3. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    4. Goisque, Guillaume & Rapine, Christophe, 2017. "An efficient algorithm for the 2-level capacitated lot-sizing problem with identical capacities at both levels," European Journal of Operational Research, Elsevier, vol. 261(3), pages 918-928.
    5. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.
    6. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    7. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt6zz2g0z4, University of California Transportation Center.
    8. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    9. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    10. Hnaien, Faicel & Afsar, Hasan Murat, 2017. "Robust single-item lot-sizing problems with discrete-scenario lead time," International Journal of Production Economics, Elsevier, vol. 185(C), pages 223-229.
    11. Hwang, Hark-Chin & Kang, Jangha, 2020. "The two-level lot-sizing problem with outbound shipment," Omega, Elsevier, vol. 90(C).
    12. Fink, Jiří & Hurink, Johann L., 2015. "Minimizing costs is easier than minimizing peaks when supplying the heat demand of a group of houses," European Journal of Operational Research, Elsevier, vol. 242(2), pages 644-650.
    13. van Hoesel, C.P.M. & Romeijn, H.E. & Romero Morales, M.D. & Wagelmans, A., 2002. "Polynomial time algorithms for some multi-level lot-sizing problems with production capacities," Research Memorandum 018, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    14. Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
    15. Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie & Ghribi, Houcem, 2017. "NP-hard and polynomial cases for the single-item lot sizing problem with batch ordering under capacity reservation contract," European Journal of Operational Research, Elsevier, vol. 257(2), pages 483-493.
    16. van den Heuvel, W.J. & Wagelmans, A.P.M., 2003. "A geometric algorithm to solve the NI/G/NI/ND capacitated lot-sizing problem in O(T2) time," Econometric Institute Research Papers EI 2003-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    18. Ayse Akbalik & Bernard Penz & Christophe Rapine, 2015. "Capacitated lot sizing problems with inventory bounds," Annals of Operations Research, Springer, vol. 229(1), pages 1-18, June.
    19. Farhat, Mlouka & Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie, 2019. "Lot sizing problem with batch ordering under periodic buyback contract and lost sales," International Journal of Production Economics, Elsevier, vol. 208(C), pages 500-511.
    20. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt9gx170tx, University of California Transportation Center.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:42:y:2017:i:3:p:854-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.