IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v69y2023i5p2778-2787.html
   My bibliography  Save this article

Learning in Networks: An Experiment on Large Networks with Real-World Features

Author

Listed:
  • Syngjoo Choi

    (Department of Economics, Seoul National University, Seoul 08826, Republic of Korea)

  • Sanjeev Goyal

    (University of Cambridge, Cambridge, United Kingdom; New York University Abu Dhabi, Abu Dhabi, United Arab Emirates)

  • Frederic Moisan

    (Emlyon Business School, GATE UMR 5824, 69130 Ecully, France)

  • Yu Yang Tony To

    (University of Cambridge, Cambridge, United Kingdom)

Abstract

Subjects observe a private signal and make an initial guess; they then observe their neighbors’ guesses, update their own guess, and so forth. We study learning dynamics in three large-scale networks capturing features of real-world social networks: Erdös–Rényi, Stochastic Block (reflecting network homophily), and Royal Family (that accommodates both highly connected celebrities and local interactions). We find that the Royal Family network is more likely to sustain incorrect consensus and that the Stochastic Block network is more likely to persist with diverse beliefs. These patterns are consistent with the predictions of DeGroot updating. It lends support to the notion that the use of simple heuristics in information aggregation is prevalent in large and complex networks.

Suggested Citation

  • Syngjoo Choi & Sanjeev Goyal & Frederic Moisan & Yu Yang Tony To, 2023. "Learning in Networks: An Experiment on Large Networks with Real-World Features," Management Science, INFORMS, vol. 69(5), pages 2778-2787, May.
  • Handle: RePEc:inm:ormnsc:v:69:y:2023:i:5:p:2778-2787
    DOI: 10.1287/mnsc.2023.4680
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2023.4680
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2023.4680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    2. Szeidl, Adam & Mobius, Markus & Phan, Tuan, 2015. "Treasure Hunt: Social Learning in the Field," CEPR Discussion Papers 10493, C.E.P.R. Discussion Papers.
    3. Sergio Currarini & Matthew O. Jackson & Paolo Pin, 2009. "An Economic Model of Friendship: Homophily, Minorities, and Segregation," Econometrica, Econometric Society, vol. 77(4), pages 1003-1045, July.
    4. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    5. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    6. Veronika Grimm & Friederike Mengel, 2020. "Experiments on Belief Formation in Networks," Journal of the European Economic Association, European Economic Association, vol. 18(1), pages 49-82.
    7. Myra Mohnen, 2022. "Stars and Brokers: Knowledge Spillovers Among Medical Scientists," Management Science, INFORMS, vol. 68(4), pages 2513-2532, April.
    8. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    9. Benjamini, Itai & Chan, Siu-On & O’Donnell, Ryan & Tamuz, Omer & Tan, Li-Yang, 2016. "Convergence, unanimity and disagreement in majority dynamics on unimodular graphs and random graphs," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2719-2733.
    10. Arun G. Chandrasekhar & Horacio Larreguy & Juan Pablo Xandri, 2020. "Testing Models of Social Learning on Networks: Evidence From Two Experiments," Econometrica, Econometric Society, vol. 88(1), pages 1-32, January.
    11. Syngjoo Choi & Douglas Gale & Shachar Kariv, 2005. "Learning in Networks: An Experimental Study," Levine's Bibliography 122247000000000044, UCLA Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    2. Syngjoo Choi & Edoardo Gallo & Shachar Kariv, 2015. "Networks in the laboratory," Cambridge Working Papers in Economics 1551, Faculty of Economics, University of Cambridge.
    3. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    4. Alex Centeno, 2022. "A Structural Model for Detecting Communities in Networks," Papers 2209.08380, arXiv.org, revised Oct 2022.
    5. Anufriev, Mikhail & Borissov, Kirill & Pakhnin, Mikhail, 2023. "Dissonance minimization and conversation in social networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 167-191.
    6. Mueller-Frank, Manuel & Arieliy, Itai, 2015. "A General Model of Boundedly Rational Observational Learning: Theory and Experiment," IESE Research Papers D/1120, IESE Business School.
    7. Corazzini, Luca & Pavesi, Filippo & Petrovich, Beatrice & Stanca, Luca, 2012. "Influential listeners: An experiment on persuasion bias in social networks," European Economic Review, Elsevier, vol. 56(6), pages 1276-1288.
    8. Foerster, Manuel, 2019. "Dynamics of strategic information transmission in social networks," Theoretical Economics, Econometric Society, vol. 14(1), January.
    9. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    10. Yann Algan & Quoc-Anh Do & Nicolò Dalvit & Alexis Le Chapelain & Yves Zenou, 2015. "How Social Networks Shape Our Beliefs: A Natural Experiment among Future French Politicians," Working Papers hal-03459820, HAL.
    11. repec:spo:wpmain:info:hdl:2441/78vacv4udu92eq3fec89svm9uv is not listed on IDEAS
    12. Prummer, Anja & Siedlarek, Jan-Peter, 2014. "Institutions And The Preservation Of Cultural Traits," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 470, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    13. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    14. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    15. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    16. Ilan Lobel & Evan Sadler, 2016. "Preferences, Homophily, and Social Learning," Operations Research, INFORMS, vol. 64(3), pages 564-584, June.
    17. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    18. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    19. Berno Buechel & Stefan Klößner & Martin Lochmüller & Heiko Rauhut, 2020. "The strength of weak leaders: an experiment on social influence and social learning in teams," Experimental Economics, Springer;Economic Science Association, vol. 23(2), pages 259-293, June.
    20. Matthew O. Jackson & Benjamin Golub, 2007. "Naïve Learning in Social Networks: Convergence, Influence and Wisdom of Crowds," Working Papers 2007.64, Fondazione Eni Enrico Mattei.
    21. Comola, Margherita & Rusinowska, Agnieszka & Villeval, Marie Claire, 2024. "Competing for Influence in Networks through Strategic Targeting," IZA Discussion Papers 17315, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:69:y:2023:i:5:p:2778-2787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.