IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v69y2023i2p824-845.html
   My bibliography  Save this article

Dynamic Pricing with Online Reviews

Author

Listed:
  • Dongwook Shin

    (HKUST Business School, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

  • Stefano Vaccari

    (Global Data Hub, Global Digital Solutions, ENEL Global Services, 00198 Rome, Italy)

  • Assaf Zeevi

    (Graduate School of Business, Columbia University, New York, New York 10025)

Abstract

This paper investigates how the pricing policy of a revenue-maximizing monopolist is influenced by the social learning dynamics of customers who use online reviews to estimate the quality of the product. A salient feature of our problem is that the customers’ willingness to pay, and hence the demand function, evolves over time in conjunction with the online reviews. The monopolist strives to maximize its total expected revenue over a finite horizon by adjusting prices in response to these dynamics. The revenue maximization problem is studied using two different review models: a quality-based review model, where customers report their experienced quality, and a value-based review model, where reviews internalize experienced quality as well as the purchase price. To formulate the problem in tractable form, we derive a fluid model that provides a good approximation of the system dynamics when the volume of sales is large. This formulation lends itself to key structural insights into the interactions between optimal pricing policies and review dynamics. In particular, we identify critical time scales and social learning regimes that sharply separate the efficacy of dynamic pricing vis-à-vis fixed-price strategies. Furthermore, we demonstrate the impact of the quality-based and value-based review models on key structural properties of the optimal pricing policies. These structural insights are also elucidated in an illustrative simulation study based on data from an online marketplace.

Suggested Citation

  • Dongwook Shin & Stefano Vaccari & Assaf Zeevi, 2023. "Dynamic Pricing with Online Reviews," Management Science, INFORMS, vol. 69(2), pages 824-845, February.
  • Handle: RePEc:inm:ormnsc:v:69:y:2023:i:2:p:824-845
    DOI: 10.1287/mnsc.2022.4387
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2022.4387
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2022.4387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William L. Cooper, 2002. "Asymptotic Behavior of an Allocation Policy for Revenue Management," Operations Research, INFORMS, vol. 50(4), pages 720-727, August.
    2. Yiangos Papanastasiou & Nicos Savva, 2017. "Dynamic Pricing in the Presence of Social Learning and Strategic Consumers," Management Science, INFORMS, vol. 63(4), pages 919-939, April.
    3. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    4. Milgrom, Paul & Roberts, John, 1986. "Price and Advertising Signals of Product Quality," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 796-821, August.
    5. Luís Cabral & Lingfang (Ivy) Li, 2015. "A Dollar for Your Thoughts: Feedback-Conditional Rebates on eBay," Management Science, INFORMS, vol. 61(9), pages 2052-2063, September.
    6. Kenneth L. Judd & Michael H. Riordan, 1994. "Price and Quality in a New Product Monopoly," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 773-789.
    7. John H. Roberts & Glen L. Urban, 1988. "Modeling Multiattribute Utility, Risk, and Belief Dynamics for New Consumer Durable Brand Choice," Management Science, INFORMS, vol. 34(2), pages 167-185, February.
    8. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    9. André Stenzel & Christoph Wolf & Peter Schmidt, 2020. "Pricing for the Stars - Dynamic Pricing in the Presence of Rating Systems," CRC TR 224 Discussion Paper Series crctr224_2020_143v2, University of Bonn and University of Mannheim, Germany.
    10. He, Qiao-Chu & Chen, Ying-Ju, 2018. "Dynamic pricing of electronic products with consumer reviews," Omega, Elsevier, vol. 80(C), pages 123-134.
    11. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    12. Guillermo Gallego & Garrett van Ryzin, 1997. "A Multiproduct Dynamic Pricing Problem and Its Applications to Network Yield Management," Operations Research, INFORMS, vol. 45(1), pages 24-41, February.
    13. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    14. Constantinos Maglaras & Joern Meissner, 2006. "Dynamic Pricing Strategies for Multiproduct Revenue Management Problems," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 136-148, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dipankar Das, 2023. "A Model of Competitive Assortment Planning Algorithm," Papers 2307.09479, arXiv.org.
    2. Chaab, Jafar & Zaccour, Georges, 2024. "Dynamic pricing in the presence of social externalities and reference-price effect," Omega, Elsevier, vol. 122(C).
    3. Shushu Xie & Yingxue Zhao & Lin Zhao & Xingyuan He, 2024. "Do Online Reviews Always Incentivise Remanufacturers to Improve Quality in a Competitive Environment?," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(67), pages 903-903, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renato Matta & Timothy J. Lowe, 2023. "Product price alignment with seller service rating and consumer satisfaction," Annals of Operations Research, Springer, vol. 320(2), pages 695-725, January.
    2. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    3. Koenig, Matthias & Meissner, Joern, 2010. "List pricing versus dynamic pricing: Impact on the revenue risk," European Journal of Operational Research, Elsevier, vol. 204(3), pages 505-512, August.
    4. Grunewald, Andreas & Kräkel, Matthias, 2017. "Advertising as signal jamming," International Journal of Industrial Organization, Elsevier, vol. 55(C), pages 91-113.
    5. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    6. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    7. Jürgen Neumann & Dominik Gutt & Dennis Kundisch, 2018. "The Traveling Reviewer Problem – Exploring the Relationship between Offline Locations and Online Rating Behavior," Working Papers Dissertations 44, Paderborn University, Faculty of Business Administration and Economics.
    8. Taeuscher, Karl, 2019. "Reputation and new venture performance in online markets: The moderating role of market crowding," Journal of Business Venturing, Elsevier, vol. 34(6).
    9. Pornpawee Bumpensanti & He Wang, 2020. "A Re-Solving Heuristic with Uniformly Bounded Loss for Network Revenue Management," Management Science, INFORMS, vol. 66(7), pages 2993-3009, July.
    10. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    11. Xing Hu & Zhixi Wan & Nagesh N. Murthy, 2019. "Dynamic Pricing of Limited Inventories with Product Returns," Manufacturing & Service Operations Management, INFORMS, vol. 21(3), pages 501-518, July.
    12. Hui, Xiang & Klein, Tobias & Stahl, Konrad, 2022. "Learning from Online Ratings," CEPR Discussion Papers 17006, C.E.P.R. Discussion Papers.
    13. Edgardo Arturo Ayala Gaytán, 2009. "Social network externalities and price dispersion in online markets," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 1-28, November.
    14. Tobias Gesche, 2022. "Reference‐price shifts and customer antagonism: Evidence from reviews for online auctions," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(3), pages 558-578, August.
    15. Nan Yang & Renyu Zhang, 2022. "Dynamic pricing and inventory management in the presence of online reviews," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3180-3197, August.
    16. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    17. Aniruddha Dutta, 2019. "Capacity Allocation of Game Tickets Using Dynamic Pricing," Data, MDPI, vol. 4(4), pages 1-12, October.
    18. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    19. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    20. Lingfang (Ivy) Li & Steven Tadelis & Xiaolan Zhou, 2020. "Buying reputation as a signal of quality: Evidence from an online marketplace," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 965-988, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:69:y:2023:i:2:p:824-845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.