IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v18y2016i1p51-68.html
   My bibliography  Save this article

Pricing Personalized Bundles: A New Approach and An Empirical Study

Author

Listed:
  • Zhengliang Xue

    (IBM T. J. Watson Research Center, Yorktown Heights, New York 10598)

  • Zizhuo Wang

    (Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55414)

  • Markus Ettl

    (IBM T. J. Watson Research Center, Yorktown Heights, New York 10598)

Abstract

This paper studies the pricing strategies for personalized product bundles. In such problems, a seller provides a variety of products for which customers can construct a personalized bundle and send a request for quote (RFQ) to the seller. The seller, after reviewing the RFQ, has to determine a price based on which the customer either purchases the whole bundle or nothing. Such problems are faced by many companies in practice, and they are very difficult because of the potential unlimited possible configurations of the bundle and the correlations among the individual products. In this paper, we propose a novel top-down and bottom-up approach to solve this problem. In the top-down step, we decompose the bundle into each component and calibrate a value score for each component. In the bottom-up step, we aggregate the components back to the bundle, define important features of the bundle, and segment different RFQs by those bundle features as well as customer attributes. Then we estimate a utility function for each segment based on historical sales data and derive an optimal price for each incoming RFQ. We show that such a model overcomes the aforementioned difficulties and can be implemented efficiently. We test our approach using empirical data from a major information technology service provider and the test result shows that the proposed approach can improve the effectiveness of pricing significantly.

Suggested Citation

  • Zhengliang Xue & Zizhuo Wang & Markus Ettl, 2016. "Pricing Personalized Bundles: A New Approach and An Empirical Study," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 51-68, February.
  • Handle: RePEc:inm:ormsom:v:18:y:2016:i:1:p:51-68
    DOI: 10.1287/msom.2015.0563
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.2015.0563
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2015.0563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shin-yi Wu & Lorin M. Hitt & Pei-yu Chen & G. Anandalingam, 2008. "Customized Bundle Pricing for Information Goods: A Nonlinear Mixed-Integer Programming Approach," Management Science, INFORMS, vol. 54(3), pages 608-622, March.
    2. Yuanchun Jiang & Jennifer Shang & Chris F. Kemerer & Yezheng Liu, 2011. "Optimizing E-tailer Profits and Customer Savings: Pricing Multistage Customized Online Bundles," Marketing Science, INFORMS, vol. 30(4), pages 737-752, July.
    3. Kalyan Talluri & Garrett van Ryzin, 1998. "An Analysis of Bid-Price Controls for Network Revenue Management," Management Science, INFORMS, vol. 44(11-Part-1), pages 1577-1593, November.
    4. Lorin M. Hitt & Pei-yu Chen, 2005. "Bundling with Customer Self-Selection: A Simple Approach to Bundling Low-Marginal-Cost Goods," Management Science, INFORMS, vol. 51(10), pages 1481-1493, October.
    5. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Management Sciences in Research on Personalization," Management Science, INFORMS, vol. 49(10), pages 1344-1362, October.
    6. Dimitris Bertsimas & Ioana Popescu, 2003. "Revenue Management in a Dynamic Network Environment," Transportation Science, INFORMS, vol. 37(3), pages 257-277, August.
    7. E. H. Bowman, 1963. "Consistency and Optimality in Managerial Decision Making," Management Science, INFORMS, vol. 9(2), pages 310-321, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameer Mehta & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2022. "An Approximation Scheme for Data Monetization," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2412-2428, June.
    2. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    3. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    4. Bharadwaj Kadiyala & Robert Phillips & A. Serdar Şimşek & Garrett van Ryzin, 2023. "Predicting transaction outcomes under customized pricing with discretion: A structural estimation approach," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1654-1673, June.
    5. Li, Jianbin & Liu, Lang & Luo, Xiaomeng & Zhu, Stuart X., 2023. "Interactive bundle pricing strategy for online pharmacies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    6. Wu, Xiangxiang & Zha, Yong & Ling, Liuyi & Yu, Yugang, 2022. "Competing OEMs’ responses to a developer's services installation and strategic update of platform quality," European Journal of Operational Research, Elsevier, vol. 297(2), pages 545-559.
    7. Jérémie Gallien & Alan Scheller-Wolf, 2016. "Introduction to the Special Issue on Practice-Focused Research," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 1-4, February.
    8. Muzaffer Buyruk & Ertan Güner, 2022. "Personalization in airline revenue management: an overview and future outlook," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 129-139, April.
    9. Cao, Qingning & Tang, Yuanzhao & Perera, Sandun & Zhang, Jianqiang, 2022. "Manufacturer- versus retailer-initiated bundling: Implications for the supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ritwik Raj & Mark H. Karwan & Chase Murray & Lei Sun, 2022. "Itemized pricing in B2B bundles with diminishing reservation prices and loss averse customers," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(4), pages 375-392, August.
    2. Huang, Yeu-Shiang & Ho, Jyh-Wen & Wu, Guan-Jin, 2022. "A study on promotion with strategic two-stage customized bundling," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    3. Moussawi-Haidar, Lama & Nasr, Walid & Jalloul, Maya, 2021. "Standardized cargo network revenue management with dual channels under stochastic and time-dependent demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 275-291.
    4. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    5. David Simchi-Levi & Rui Sun & Huanan Zhang, 2022. "Online Learning and Optimization for Revenue Management Problems with Add-on Discounts," Management Science, INFORMS, vol. 68(10), pages 7402-7421, October.
    6. Guillermo Gallego & Robert Phillips, 2004. "Revenue Management of Flexible Products," Manufacturing & Service Operations Management, INFORMS, vol. 6(4), pages 321-337, January.
    7. Chevalier, Philippe & Lamas, Alejandro & Lu, Liang & Mlinar, Tanja, 2015. "Revenue management for operations with urgent orders," European Journal of Operational Research, Elsevier, vol. 240(2), pages 476-487.
    8. Thomas Spengler & Stefan Rehkopf, 2005. "Revenue Management Konzepte zur Entscheidungsunterstützung bei der Annahme von Kundenaufträgen," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 16(2), pages 123-146, June.
    9. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    10. Atanu Lahiri & Rajiv M. Dewan & Marshall Freimer, 2013. "Pricing of Wireless Services: Service Pricing vs. Traffic Pricing," Information Systems Research, INFORMS, vol. 24(2), pages 418-435, June.
    11. Georgia Perakis & Guillaume Roels, 2010. "Robust Controls for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 56-76, November.
    12. L. F. Escudero & J. F. Monge & D. Romero Morales & J. Wang, 2013. "Expected Future Value Decomposition Based Bid Price Generation for Large-Scale Network Revenue Management," Transportation Science, INFORMS, vol. 47(2), pages 181-197, May.
    13. Cataldo, Alejandro & Ferrer, Juan–Carlos, 2017. "Optimal pricing and composition of multiple bundles: A two-step approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 766-777.
    14. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
    15. Sonja Lehmann & Peter Buxmann, 2009. "Pricing Strategies of Software Vendors," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 1(6), pages 452-462, December.
    16. Mayer, Stefan & Klein, Robert & Seiermann, Stephanie, 2013. "A simulation-based approach to price optimisation of the mixed bundling problem with capacity constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 584-598.
    17. Huseyin Topaloglu & S. Ilker Birbil & J. B. G. Frenk & Nilay Noyan, 2012. "Tractable Open Loop Policies for Joint Overbooking and Capacity Control Over a Single Flight Leg with Multiple Fare Classes," Transportation Science, INFORMS, vol. 46(4), pages 460-481, November.
    18. Tuomas Sandholm & Anton Likhodedov, 2015. "Automated Design of Revenue-Maximizing Combinatorial Auctions," Operations Research, INFORMS, vol. 63(5), pages 1000-1025, October.
    19. Rustam Ibragimov & Johan Walden, 2010. "Optimal Bundling Strategies Under Heavy-Tailed Valuations," Management Science, INFORMS, vol. 56(11), pages 1963-1976, November.
    20. Sheikhzadeh, Mehdi & Elahi, Ehsan, 2013. "Product bundling: Impacts of product heterogeneity and risk considerations," International Journal of Production Economics, Elsevier, vol. 144(1), pages 209-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:18:y:2016:i:1:p:51-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.