IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v177y2023ics1366554523002454.html
   My bibliography  Save this article

Dynamic decisions between sellers and consumers in online second-hand trading platforms: Evidence from C2C transactions

Author

Listed:
  • Gu, Wei
  • Luo, Jing
  • Yu, Xiaoru
  • Zhang, Wenqing
  • Li, Baixun

Abstract

Dynamic decisions have become pivotal strategies for sellers and consumers in C2C second-hand product market. This study instroduces a two-stage pricing model and a consumer choice model, aiming to scrutinize the dynamic pricing behaviors of individual sellers and their subsequent impact on consumer choice. Leveraging data from the Xianyu platform, akin to eBay, we identify two fundamental dynamics that underscore successful pricing strategies. Seller pricing behaviors for second-hand products are subject to a number of influences, encompassing the duration since release, consumer engagement with product features, emotive descriptions, and feedback from market information. Our investigation unveils that sellers tend to recalibrate prices in the second phase if their second-hand products remain unsold during the initial phase, leveraging additional insights amassed during the first period. This adjustment is particularly pronounced if the price adjustment in the second phase is influenced by the time since the product's release. Moreover, the extra information gleaned during the initial phase affects the range of price adjustments. Notably, our research uncovers that consumers exhibit heightened attentiveness to product features and optimistic emotional descriptions in the search stage. Conversely, during the purchasing stage, product prices and the time since release emerge as more pivotal determinants. However, prevailing price adjustment practices predominantly center around markdowns or markups, with the time since release dampening purchasing inclinations. Our findings disclose that among these practices, only price markdowns hold the power to effectively stimulate purchase decisions, particularly when influenced by the duration since release. Based on these insights, we suggest that sellers should refrain from concentrating solely on pricing adjustments for their second-hand products. Instead, they would benefit from incorporating the additional market insights gained from the time since the product’s release and the feedback from consumers to enhance the quality of dynamic pricing decisions.

Suggested Citation

  • Gu, Wei & Luo, Jing & Yu, Xiaoru & Zhang, Wenqing & Li, Baixun, 2023. "Dynamic decisions between sellers and consumers in online second-hand trading platforms: Evidence from C2C transactions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:transe:v:177:y:2023:i:c:s1366554523002454
    DOI: 10.1016/j.tre.2023.103257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523002454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antino Kim & Rajib L. Saha & Warut Khern-am-nuai, 2021. "Manufacturer’s “1-Up” from Used Games: Insights from the Secondhand Market for Video Games," Information Systems Research, INFORMS, vol. 32(4), pages 1173-1191, December.
    2. Yinliang (Ricky) Tan & Janice E. Carrillo, 2017. "Strategic Analysis of the Agency Model for Digital Goods," Production and Operations Management, Production and Operations Management Society, vol. 26(4), pages 724-741, April.
    3. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.
    4. Cai, Ya-Jun & Choi, Tsan-Ming, 2020. "A United Nations’ Sustainable Development Goals perspective for sustainable textile and apparel supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    5. Guillermo Gallego & Garrett van Ryzin, 1997. "A Multiproduct Dynamic Pricing Problem and Its Applications to Network Yield Management," Operations Research, INFORMS, vol. 45(1), pages 24-41, February.
    6. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    7. Ruomeng Cui & Dennis J. Zhang & Achal Bassamboo, 2019. "Learning from Inventory Availability Information: Evidence from Field Experiments on Amazon," Management Science, INFORMS, vol. 65(3), pages 1216-1235, March.
    8. Marshall Fisher & Santiago Gallino & Jun Li, 2018. "Competition-Based Dynamic Pricing in Online Retailing: A Methodology Validated with Field Experiments," Management Science, INFORMS, vol. 64(6), pages 2496-2514, June.
    9. Ren, Shuyun & Luo, Fengji & Lin, Lei & Hsu, Shu-Chien & LI, Xuran Ivan, 2019. "A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration," International Journal of Production Economics, Elsevier, vol. 218(C), pages 339-351.
    10. Shlomo Kalish, 1983. "Monopolist Pricing with Dynamic Demand and Production Cost," Marketing Science, INFORMS, vol. 2(2), pages 135-159.
    11. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    12. Gebhardt, Maximilian & Spieske, Alexander & Birkel, Hendrik, 2022. "The future of the circular economy and its effect on supply chain dependencies: Empirical evidence from a Delphi study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    13. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    14. Eric Cope, 2007. "Bayesian strategies for dynamic pricing in e‐commerce," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 265-281, April.
    15. Yalç{i}n Akçay & Harihara Prasad Natarajan & Susan H. Xu, 2010. "Joint Dynamic Pricing of Multiple Perishable Products Under Consumer Choice," Management Science, INFORMS, vol. 56(8), pages 1345-1361, August.
    16. Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
    17. Xingyue (Luna) Zhang & Ruomeng Cui & Oliver Yao, 2023. "The version effect of apps and operating systems in mobile commerce," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 637-654, February.
    18. Avittathur, Balram & Biswas, Indranil, 2017. "A note on limited clearance sale inventory model," International Journal of Production Economics, Elsevier, vol. 193(C), pages 647-653.
    19. Bicheng Yang & Tat Chan & Raphael Thomadsen, 2019. "A Salesforce-Driven Model of Consumer Choice," Marketing Science, INFORMS, vol. 38(5), pages 871-887, September.
    20. Wedad J. Elmaghraby & Anandasivam Gopal & Ali Pilehvar, 2018. "Starting Prices in Liquidation Auctions for IT Equipment: Evidence from Field Experiments," Production and Operations Management, Production and Operations Management Society, vol. 27(11), pages 1906-1927, November.
    21. Shen, Bin & Xu, Xiaoyan & Yuan, Quan, 2020. "Selling secondhand products through an online platform with blockchain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    22. Pashigian, B Peter, 1988. "Demand Uncertainty and Sales: A Study of Fashion and Markdown Pricin g," American Economic Review, American Economic Association, vol. 78(5), pages 936-953, December.
    23. Wen Zhao & Yu-Sheng Zheng, 2000. "Optimal Dynamic Pricing for Perishable Assets with Nonhomogeneous Demand," Management Science, INFORMS, vol. 46(3), pages 375-388, March.
    24. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    25. Judith A. Chevalier & Anil K. Kashyap & Peter E. Rossi, 2003. "Why Don't Prices Rise During Periods of Peak Demand? Evidence from Scanner Data," American Economic Review, American Economic Association, vol. 93(1), pages 15-37, March.
    26. Cao, Ping & Zhao, Nenggui & Wu, Jie, 2019. "Dynamic pricing with Bayesian demand learning and reference price effect," European Journal of Operational Research, Elsevier, vol. 279(2), pages 540-556.
    27. John R. Knight, 2002. "Listing Price, Time on Market, and Ultimate Selling Price: Causes and Effects of Listing Price Changes," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 30(2), pages 213-237.
    28. Ningyuan Chen & Guillermo Gallego, 2019. "Welfare Analysis of Dynamic Pricing," Management Science, INFORMS, vol. 65(1), pages 139-151, January.
    29. Luo, Nuan & Wang, Yu & Zhang, Mingli & Niu, Tao & Tu, Jianbo, 2020. "Integrating community and e-commerce to build a trusted online second-hand platform: Based on the perspective of social capital," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    30. Yuri Levin & Jeff McGill & Mikhail Nediak, 2009. "Dynamic Pricing in the Presence of Strategic Consumers and Oligopolistic Competition," Management Science, INFORMS, vol. 55(1), pages 32-46, January.
    31. Padmavathy, Chandrasekaran & Swapana, Murali & Paul, Justin, 2019. "Online second-hand shopping motivation – Conceptualization, scale development, and validation," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 19-32.
    32. Anand Paul & Yinliang (Ricky) Tan & Asoo J. Vakharia, 2015. "Inventory Planning for a Modular Product Family," Production and Operations Management, Production and Operations Management Society, vol. 24(7), pages 1033-1053, July.
    33. Zhao, Li & Tian, Peng & Xiangyong Li, 2012. "Dynamic pricing in the presence of consumer inertia," Omega, Elsevier, vol. 40(2), pages 137-148, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Stamatopoulos & Christos Tzamos, 2019. "Design and Dynamic Pricing of Vertically Differentiated Inventories," Management Science, INFORMS, vol. 65(9), pages 4222-4241, September.
    2. Ibrahim, Michael Nawar & Atiya, Amir F., 2016. "Analytical solutions to the dynamic pricing problem for time-normalized revenue," European Journal of Operational Research, Elsevier, vol. 254(2), pages 632-643.
    3. Peter Seele & Claus Dierksmeier & Reto Hofstetter & Mario D. Schultz, 2021. "Mapping the Ethicality of Algorithmic Pricing: A Review of Dynamic and Personalized Pricing," Journal of Business Ethics, Springer, vol. 170(4), pages 697-719, May.
    4. Guillermo Gallego & Michael Z. F. Li & Yan Liu, 2020. "Dynamic Nonlinear Pricing of Inventories over Finite Sales Horizons," Operations Research, INFORMS, vol. 68(3), pages 655-670, May.
    5. Xuanming Su, 2007. "Intertemporal Pricing with Strategic Customer Behavior," Management Science, INFORMS, vol. 53(5), pages 726-741, May.
    6. Prakash, David & Spann, Martin, 2022. "Dynamic pricing and reference price effects," Journal of Business Research, Elsevier, vol. 152(C), pages 300-314.
    7. Torsten J. Gerpott & Jan Berends, 2022. "Competitive pricing on online markets: a literature review," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(6), pages 596-622, December.
    8. Gabriel Bitran & René Caldentey, 2003. "An Overview of Pricing Models for Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 203-229, August.
    9. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    10. Dasci, A. & Karakul, M., 2009. "Two-period dynamic versus fixed-ratio pricing in a capacity constrained duopoly," European Journal of Operational Research, Elsevier, vol. 197(3), pages 945-968, September.
    11. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    12. Aniruddha Dutta, 2019. "Capacity Allocation of Game Tickets Using Dynamic Pricing," Data, MDPI, vol. 4(4), pages 1-12, October.
    13. Namin, Aidin & Soysal, Gonca P. & Ratchford, Brian T., 2022. "Alleviating demand uncertainty for seasonal goods: An analysis of attribute-based markdown policy for fashion retailers," Journal of Business Research, Elsevier, vol. 145(C), pages 671-681.
    14. Adam J. Mersereau & Dan Zhang, 2012. "Markdown Pricing with Unknown Fraction of Strategic Customers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 355-370, July.
    15. Banerjee, Pradeep K. & Turner, T. Rolf, 2012. "A flexible model for the pricing of perishable assets," Omega, Elsevier, vol. 40(5), pages 533-540.
    16. Wedad Elmaghraby & Altan Gülcü & P{i}nar Keskinocak, 2008. "Designing Optimal Preannounced Markdowns in the Presence of Rational Customers with Multiunit Demands," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 126-148, June.
    17. Xiangyu Gao & Stefanus Jasin & Sajjad Najafi & Huanan Zhang, 2022. "Joint Learning and Optimization for Multi-Product Pricing (and Ranking) Under a General Cascade Click Model," Management Science, INFORMS, vol. 68(10), pages 7362-7382, October.
    18. Raymond Deneckere & James Peck, 2012. "Dynamic Competition With Random Demand and Costless Search: A Theory of Price Posting," Econometrica, Econometric Society, vol. 80(3), pages 1185-1247, May.
    19. Pavithra Harsha & Shivaram Subramanian & Joline Uichanco, 2019. "Dynamic Pricing of Omnichannel Inventories," Service Science, INFORMS, vol. 21(1), pages 47-65, January.
    20. Nair, Anand & Closs, David J., 2006. "An examination of the impact of coordinating supply chain policies and price markdowns on short lifecycle product retail performance," International Journal of Production Economics, Elsevier, vol. 102(2), pages 379-392, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:177:y:2023:i:c:s1366554523002454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.