Product Choice with Large Assortments: A Scalable Deep-Learning Model
Author
Abstract
Suggested Citation
DOI: 10.1287/mnsc.2021.3969
Download full text from publisher
References listed on IDEAS
- Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
- Grewal, Dhruv & Roggeveen, Anne L. & Nordfält, Jens, 2017. "The Future of Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 1-6.
- Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
- Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
- Bradlow, Eric T. & Gangwar, Manish & Kopalle, Praveen & Voleti, Sudhir, 2017. "The Role of Big Data and Predictive Analytics in Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 79-95.
- Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
- Bruno J.D. Jacobs & Bas Donkers & Dennis Fok, 2016.
"Model-Based Purchase Predictions for Large Assortments,"
Marketing Science, INFORMS, vol. 35(3), pages 389-404, May.
- Jacobs, B.J.D. & Donkers, A.C.D. & Fok, D., 2016. "Model-based Purchase Predictions for Large Assortments," ERIM Report Series Research in Management ERS-2014-007-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Adam N. Smith & Peter E. Rossi & Greg M. Allenby, 2019. "Inference for Product Competition and Separable Demand," Marketing Science, INFORMS, vol. 38(4), pages 690-710, July.
- Shasha Lu & Li Xiao & Min Ding, 2016. "A Video-Based Automated Recommender (VAR) System for Garments," Marketing Science, INFORMS, vol. 35(3), pages 484-510, May.
- Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
- Johnson, Joseph & Tellis, Gerard J. & Ip, Edward H., 2013. "To Whom, When, and How Much to Discount? A Constrained Optimization of Customized Temporal Discounts," Journal of Retailing, Elsevier, vol. 89(4), pages 361-373.
- Vincent R. Nijs & Marnik G. Dekimpe & Jan-Benedict E.M. Steenkamps & Dominique M. Hanssens, 2001. "The Category-Demand Effects of Price Promotions," Marketing Science, INFORMS, vol. 20(1), pages 1-22, September.
- Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
- McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
- Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
- Liu Liu & Daria Dzyabura & Natalie Mizik, 2020.
"Visual Listening In: Extracting Brand Image Portrayed on Social Media,"
Marketing Science, INFORMS, vol. 39(4), pages 669-686, July.
- Liu Liu & Daria Dzyabura & Natalie Mizik, 2017. "Visual Listening In: Extracting Brand Image Portrayed on Social Media," Working Papers w0258, New Economic School (NES).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qian, Yang & Ling, Haifeng & Meng, Xiangrui & Jiang, Yuanchun & Chai, Yidong & Liu, Yezheng, 2024. "Voice of the Professional: Acquiring competitive intelligence from large-scale professional generated contents," Journal of Business Research, Elsevier, vol. 180(C).
- Yu Xia & Ali Arian & Sriram Narayanamoorthy & Joshua Mabry, 2023. "RetailSynth: Synthetic Data Generation for Retail AI Systems Evaluation," Papers 2312.14095, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
- Bruno Jacobs & Dennis Fok & Bas Donkers, 2021.
"Understanding Large-Scale Dynamic Purchase Behavior,"
Marketing Science, INFORMS, vol. 40(5), pages 844-870, September.
- Jacobs, B.J.D. & Fok, D. & Donkers, A.C.D., 2020. "Understanding Large-Scale Dynamic Purchase Behavior," ERIM Report Series Research in Management ERS-2020-010-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
- David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
- Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
- Nitin Mehta, 2007. "Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis," Marketing Science, INFORMS, vol. 26(2), pages 196-217, 03-04.
- Marc R. Dotson & Joachim Büschken & Greg M. Allenby, 2020. "Explaining Preference Heterogeneity with Mixed Membership Modeling," Marketing Science, INFORMS, vol. 39(2), pages 407-426, March.
- González-Benito, Óscar, 2004. "Random effects choice models: seeking latent predisposition segments in the context of retail store format selection," Omega, Elsevier, vol. 32(2), pages 167-177, April.
- Minjung Kwon & Tülin Erdem & Masakazu Ishihara, 2023. "Counter-cyclical price promotion: Capturing seasonal changes in stockpiling and endogenous consumption," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 437-492, December.
- Vidya Mani & Douglas J. Thomas & Saurabh Bansal, 2022. "Estimating Substitution and Basket Effects in Retail Stores: Implications for Assortment Planning," Management Science, INFORMS, vol. 68(7), pages 5002-5024, July.
- Greg M. Allenby & Thomas S. Shively & Sha Yang & Mark J. Garratt, 2004. "A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts," Marketing Science, INFORMS, vol. 23(1), pages 95-108, June.
- Jorge Silva-Risso & Irina Ionova, 2008. "—A Nested Logit Model of Product and Transaction-Type Choice for Planning Automakers' Pricing and Promotions," Marketing Science, INFORMS, vol. 27(4), pages 545-566, 07-08.
- Jean-Pierre Dubé, 2004. "Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks," Marketing Science, INFORMS, vol. 23(1), pages 66-81, September.
- Shengjun Mao & Sanjeev Dewan & Yi-Jen (Ian) Ho, 2023. "Personalized Ranking at a Mobile App Distribution Platform," Information Systems Research, INFORMS, vol. 34(3), pages 811-827, September.
- Lu, Huidi & van der Lans, Ralf & Helsen, Kristiaan & Gauri, Dinesh K., 2023. "DEPART: Decomposing prices using atheoretical regression trees," International Journal of Research in Marketing, Elsevier, vol. 40(4), pages 781-800.
- Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
- Jean-Pierre H. Dubé, 2018. "Microeconometric Models of Consumer Demand," NBER Working Papers 25215, National Bureau of Economic Research, Inc.
- Bonnet, Céline & Richards, Timothy J., 2016. "Models of Consumer Demand for Differentiated Products," TSE Working Papers 16-741, Toulouse School of Economics (TSE).
- Grewal, Dhruv & Herhausen, Dennis & Ludwig, Stephan & Villarroel Ordenes, Francisco, 2022. "The Future of Digital Communication Research: Considering Dynamics and Multimodality," Journal of Retailing, Elsevier, vol. 98(2), pages 224-240.
- Gázquez-Abad, Juan Carlos & Canniére, Marie Hélène De & Martínez-López, Francisco J., 2011. "Dynamics of Customer Response to Promotional and Relational Direct Mailings from an Apparel Retailer: The Moderating Role of Relationship Strength," Journal of Retailing, Elsevier, vol. 87(2), pages 166-181.
More about this item
Keywords
product choice model; neural networks; targeting; cross-category choice; retail analytics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:3:p:1808-1827. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.