IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i1p690-715.html
   My bibliography  Save this article

Portfolio Choices with Many Big Models

Author

Listed:
  • Evan Anderson

    (Department of Economics, Northern Illinois University, DeKalb, Illinois 60115)

  • Ai-ru (Meg) Cheng

    (Department of Economics, Northern Illinois University, DeKalb, Illinois 60115)

Abstract

This paper proposes a Bayesian-averaging heterogeneous vector autoregressive portfolio choice strategy with many big models that outperforms existing methods out-of-sample on numerous daily, weekly, and monthly datasets. The strategy assumes that excess returns are approximately determined by a time-varying regression with a large number of explanatory variables that are the sample means of past returns. Investors consider the possibility that every period there is a regime change by keeping track of many models, but doubt that any specification is able to perfectly predict the distribution of future returns, and compute portfolio choices that are robust to model misspecification.

Suggested Citation

  • Evan Anderson & Ai-ru (Meg) Cheng, 2022. "Portfolio Choices with Many Big Models," Management Science, INFORMS, vol. 68(1), pages 690-715, January.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:1:p:690-715
    DOI: 10.1287/mnsc.2020.3876
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.3876
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Jun Tu, 2010. "Is Regime Switching in Stock Returns Important in Portfolio Decisions?," Management Science, INFORMS, vol. 56(7), pages 1198-1215, July.
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.
    5. Tu, Jun & Zhou, Guofu, 2010. "Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 959-986, August.
    6. Kandel, Shmuel & Stambaugh, Robert F, 1996. "On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
    7. Lubos Pastor & Pietro Veronesi, 2009. "Learning in Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 361-381, November.
    8. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    9. Raman Uppal & Tan Wang, 2003. "Model Misspecification and Underdiversification," Journal of Finance, American Finance Association, vol. 58(6), pages 2465-2486, December.
    10. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Permanent Income and Pricing," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 3, pages 33-81, World Scientific Publishing Co. Pte. Ltd..
    11. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    12. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    13. Larry G. Epstein & Martin Schneider, 2010. "Ambiguity and Asset Markets," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 315-346, December.
    14. Victor DeMiguel & Francisco J. Nogales & Raman Uppal, 2014. "Stock Return Serial Dependence and Out-of-Sample Portfolio Performance," The Review of Financial Studies, Society for Financial Studies, vol. 27(4), pages 1031-1073.
    15. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    16. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    17. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    18. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    19. Lars Peter Hansen & Thomas J Sargent, 2014. "A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 4, pages 83-143, World Scientific Publishing Co. Pte. Ltd..
    20. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    21. Evan W. Anderson & Ai-Ru (Meg) Cheng, 2016. "Robust Bayesian Portfolio Choices," The Review of Financial Studies, Society for Financial Studies, vol. 29(5), pages 1330-1375.
    22. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    23. Stambaugh, Robert F., 1997. "Analyzing investments whose histories differ in length," Journal of Financial Economics, Elsevier, vol. 45(3), pages 285-331, September.
    24. Ľuboš Pástor, 2000. "Portfolio Selection and Asset Pricing Models," Journal of Finance, American Finance Association, vol. 55(1), pages 179-223, February.
    25. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    26. Winkler, Robert L & Barry, Christopher B, 1975. "A Bayesian Model for Portfolio Selection and Revision," Journal of Finance, American Finance Association, vol. 30(1), pages 179-192, March.
    27. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    28. Doron Avramov, 2004. "Stock Return Predictability and Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 699-738.
    29. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    30. Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.
    31. Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
    32. Tu, Jun & Zhou, Guofu, 2004. "Data-generating process uncertainty: What difference does it make in portfolio decisions?," Journal of Financial Economics, Elsevier, vol. 72(2), pages 385-421, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
    2. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    3. Kellerer, Belinda, 2019. "Portfolio Optimization and Ambiguity Aversion," Junior Management Science (JUMS), Junior Management Science e. V., vol. 4(3), pages 305-338.
    4. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    5. Tu, Jun & Zhou, Guofu, 2010. "Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 959-986, August.
    6. Agarwal, Vikas & Arisoy, Y. Eser & Naik, Narayan Y., 2017. "Volatility of aggregate volatility and hedge fund returns," Journal of Financial Economics, Elsevier, vol. 125(3), pages 491-510.
    7. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    8. David Bauder & Taras Bodnar & Stepan Mazur & Yarema Okhrin, 2018. "Bayesian Inference For The Tangent Portfolio," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-27, December.
    9. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.
    10. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    11. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    12. Sangwon Suh, 2016. "A Combination Rule for Portfolio Selection with Transaction Costs," International Review of Finance, International Review of Finance Ltd., vol. 16(3), pages 393-420, September.
    13. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    14. Guidolin, Massimo & Liu, Hening, 2016. "Ambiguity Aversion and Underdiversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(4), pages 1297-1323, August.
    15. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    16. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    17. Fabrizio Cipollini & Giampiero Gallo & Alessandro Palandri, 2020. "A Dynamic Conditional Approach to Portfolio Weights Forecasting," Econometrics Working Papers Archive 2020_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    18. Chiaki Hara & Toshiki Honda, 2014. "Asset Demand and Ambiguity Aversion," KIER Working Papers 911, Kyoto University, Institute of Economic Research.
    19. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    20. Meyer, Steffen & Uhr, Charline, 2024. "Ambiguity and private investors’ behavior after forced fund liquidations," Journal of Financial Economics, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:1:p:690-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.