IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v61y2015i5p999-1017.html
   My bibliography  Save this article

Interdiction Games on Markovian PERT Networks

Author

Listed:
  • Eli Gutin

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Daniel Kuhn

    (Risk Analytics and Optimization Chair, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland)

  • Wolfram Wiesemann

    (Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom)

Abstract

In a stochastic interdiction game a proliferator aims to minimize the expected duration of a nuclear weapons development project, and an interdictor endeavors to maximize the project duration by delaying some of the project tasks. We formulate static and dynamic versions of the interdictor’s decision problem where the interdiction plan is either precommitted or adapts to new information revealed over time, respectively. The static model gives rise to a stochastic program, whereas the dynamic model is formalized as a multiple optimal stopping problem in continuous time and with decision-dependent information. Under a memoryless probabilistic model for the task durations, we prove that the static model reduces to a mixed-integer linear program, whereas the dynamic model reduces to a finite Markov decision process in discrete time that can be solved via efficient value iteration. We then generalize the dynamic model to account for uncertainty in the outcomes of the interdiction actions. We also discuss a crashing game where the proliferator can use limited resources to expedite tasks so as to counterbalance the interdictor’s efforts. The resulting problem can be formulated as a robust Markov decision process. This paper was accepted by Dimitris Bertsimas, optimization.

Suggested Citation

  • Eli Gutin & Daniel Kuhn & Wolfram Wiesemann, 2015. "Interdiction Games on Markovian PERT Networks," Management Science, INFORMS, vol. 61(5), pages 999-1017, May.
  • Handle: RePEc:inm:ormnsc:v:61:y:2015:i:5:p:999-1017
    DOI: 10.1287/mnsc.2014.1973
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2014.1973
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2014.1973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
    2. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    3. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    4. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2012. "Multi-resource allocation in stochastic project scheduling," Annals of Operations Research, Springer, vol. 193(1), pages 193-220, March.
    5. Arnold H. Buss & Meir J. Rosenblatt, 1997. "Activity Delay in Stochastic Project Networks," Operations Research, INFORMS, vol. 45(1), pages 126-139, February.
    6. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.
    7. S. Creemers & R. Leus & M. Lambrecht, 2010. "Scheduling Markovian PERT networks to maximize the net present value," Post-Print hal-00800198, HAL.
    8. V. G. Kulkarni & V. G. Adlakha, 1986. "Markov and Markov-Regenerative pert Networks," Operations Research, INFORMS, vol. 34(5), pages 769-781, October.
    9. Edieal Pinker & Joseph Szmerekovsky & Vera Tilson, 2013. "Technical Note---Managing a Secret Project," Operations Research, INFORMS, vol. 61(1), pages 65-72, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Yin, 2023. "Minimizing the maximal reliable path with a nodal interdiction model considering resource sharing," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Stefan Creemers, 2019. "The preemptive stochastic resource-constrained project scheduling problem," Post-Print hal-02992618, HAL.
    3. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    4. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    5. Szmerekovsky, Joseph G. & Venkateshan, Prahalad & Simonson, Peter D., 2023. "Project scheduling under the threat of catastrophic disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 784-794.
    6. Creemers, Stefan, 2019. "The preemptive stochastic resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 238-247.
    7. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Creemers, 2019. "The preemptive stochastic resource-constrained project scheduling problem," Post-Print hal-02992618, HAL.
    2. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    3. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.
    4. Szmerekovsky, Joseph G. & Venkateshan, Prahalad & Simonson, Peter D., 2023. "Project scheduling under the threat of catastrophic disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 784-794.
    5. Creemers, Stefan & De Reyck, Bert & Leus, Roel, 2015. "Project planning with alternative technologies in uncertain environments," European Journal of Operational Research, Elsevier, vol. 242(2), pages 465-476.
    6. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    7. Hermans, Ben & Leus, Roel & Looy, Bart Van, 2023. "Deciding on scheduling, secrecy, and patenting during the new product development process: The relevance of project planning models," Omega, Elsevier, vol. 116(C).
    8. Creemers, Stefan, 2019. "The preemptive stochastic resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 238-247.
    9. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    10. Shie Mannor & Ofir Mebel & Huan Xu, 2016. "Robust MDPs with k -Rectangular Uncertainty," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1484-1509, November.
    11. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.
    12. Saghafian, Soroush, 2018. "Ambiguous partially observable Markov decision processes: Structural results and applications," Journal of Economic Theory, Elsevier, vol. 178(C), pages 1-35.
    13. Bren, Austin & Saghafian, Soroush, 2018. "Data-Driven Percentile Optimization for Multi-Class Queueing Systems with Model Ambiguity: Theory and Application," Working Paper Series rwp18-008, Harvard University, John F. Kennedy School of Government.
    14. Alessio Angius & András Horváth & Marcello Urgo, 2021. "A Kronecker Algebra Formulation for Markov Activity Networks with Phase-Type Distributions," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    15. Michael Jong Kim, 2016. "Robust Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 64(4), pages 999-1014, August.
    16. Maximilian Blesch & Philipp Eisenhauer, 2023. "Robust Decision-Making under Risk and Ambiguity," Rationality and Competition Discussion Paper Series 463, CRC TRR 190 Rationality and Competition.
    17. Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
    18. V Varagapriya & Vikas Vikram Singh & Abdel Lisser, 2023. "Joint chance-constrained Markov decision processes," Annals of Operations Research, Springer, vol. 322(2), pages 1013-1035, March.
    19. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    20. Alexander Shapiro, 2016. "Rectangular Sets of Probability Measures," Operations Research, INFORMS, vol. 64(2), pages 528-541, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:61:y:2015:i:5:p:999-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.