IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v91y2016icp130-158.html
   My bibliography  Save this article

On the flexibility of using marginal distribution choice models in traffic equilibrium

Author

Listed:
  • Damla Ahipaşaoğlu, Selin
  • Arıkan, Uğur
  • Natarajan, Karthik

Abstract

Traffic equilibrium models are fundamental to the analysis of transportation systems. The stochastic user equilibrium (SUE) model which relaxes the perfect information assumption of the deterministic user equilibrium is one such model. The aim of this paper is to develop a new user equilibrium model, namely the MDM-SUE model, that uses the marginal distribution model (MDM) as the underlying route choice model. In this choice model, the marginal distributions of the path utilities are specified but the joint distribution is not. By focusing on the joint distribution that maximizes expected utility, we show that MDM-SUE exists and is unique under mild assumptions on the marginal distributions. We develop a convex optimization formulation for the MDM-SUE. For specific choices of marginal distributions, the MDM-SUE model recreates the optimization formulation of logit SUE and weibit SUE. Moreover, the model is flexible since it can capture perception variance scaling at the route level and allows for modeling different user preferences by allowing for skewed distributions and heavy tailed distributions. The model can also be generalized to incorporate bounded support distributions and discrete distributions which allows to distinguish between used and unused routes within the SUE framework. We adapt the method of successive averages to develop an efficient approach to compute MDM-SUE traffic flows. In our numerical experiments, we test the ability of MDM-SUE to relax the assumption that the error terms are independently and identically distributed random variables as in the logit models and study the additional modeling flexibility that MDM-SUE provides on small-sized networks as well as on the large network of the city of Winnipeg. The results indicate that the model provides both modeling flexibility and computational tractability in traffic equilibrium.

Suggested Citation

  • Damla Ahipaşaoğlu, Selin & Arıkan, Uğur & Natarajan, Karthik, 2016. "On the flexibility of using marginal distribution choice models in traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 130-158.
  • Handle: RePEc:eee:transb:v:91:y:2016:i:c:p:130-158
    DOI: 10.1016/j.trb.2016.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515301351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar & Rivas, Ana, 2008. "Closed form expressions for choice probabilities in the Weibull case," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 373-380, May.
    3. Kitthamkesorn, Songyot & Chen, Anthony, 2013. "A path-size weibit stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 378-397.
    4. Chen, Anthony & Pravinvongvuth, Surachet & Xu, Xiangdong & Ryu, Seungkyu & Chootinan, Piya, 2012. "Examining the scaling effect and overlapping problem in logit-based stochastic user equilibrium models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1343-1358.
    5. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part I – Model formulations under alternative distributions and restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 166-181.
    6. Azevedo, JoseAugusto & Santos Costa, Maria Emilia O. & Silvestre Madeira, Joaquim Joao E. R. & Vieira Martins, Ernesto Q., 1993. "An algorithm for the ranking of shortest paths," European Journal of Operational Research, Elsevier, vol. 69(1), pages 97-106, August.
    7. Xu, Xiangdong & Chen, Anthony & Kitthamkesorn, Songyot & Yang, Hai & Lo, Hong K., 2015. "Modeling absolute and relative cost differences in stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 686-703.
    8. Enrique Castillo & Pilar Jiménez & José Menéndez & María Nogal, 2013. "A Bayesian method for estimating traffic flows based on plate scanning," Transportation, Springer, vol. 40(1), pages 173-201, January.
    9. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    10. Vinit Kumar Mishra & Karthik Natarajan & Dhanesh Padmanabhan & Chung-Piaw Teo & Xiaobo Li, 2014. "On Theoretical and Empirical Aspects of Marginal Distribution Choice Models," Management Science, INFORMS, vol. 60(6), pages 1511-1531, June.
    11. Nakayama, Shoichiro & Chikaraishi, Makoto, 2015. "Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 672-685.
    12. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    13. Karthik Natarajan & Miao Song & Chung-Piaw Teo, 2009. "Persistency Model and Its Applications in Choice Modeling," Management Science, INFORMS, vol. 55(3), pages 453-469, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Castaldi & Paolo Delle Site & Francesco Filippi, 2019. "Stochastic user equilibrium in the presence of state dependence," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 535-559, December.
    2. Duncan, Lawrence Christopher & Watling, David Paul & Connors, Richard Dominic & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2020. "Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 1-40.
    3. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    4. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
    5. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    6. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    7. Yanqiu Ruan & Xiaobo Li & Karthyek Murthy & Karthik Natarajan, 2022. "A Nonparametric Approach with Marginals for Modeling Consumer Choice," Papers 2208.06115, arXiv.org, revised Nov 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Castaldi & Paolo Delle Site & Francesco Filippi, 2019. "Stochastic user equilibrium in the presence of state dependence," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 535-559, December.
    2. Tan, Heqing & Xu, Xiangdong & Chen, Anthony, 2024. "On endogenously distinguishing inactive paths in stochastic user equilibrium: A convex programming approach with a truncated path choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    3. Duncan, Lawrence Christopher & Watling, David Paul & Connors, Richard Dominic & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2020. "Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 1-40.
    4. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2022. "Weibit choice models: Properties, mode choice application and graphical illustrations," Journal of choice modelling, Elsevier, vol. 44(C).
    5. Xu, Xiangdong & Chen, Anthony & Kitthamkesorn, Songyot & Yang, Hai & Lo, Hong K., 2015. "Modeling absolute and relative cost differences in stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 686-703.
    6. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    7. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    8. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.
    9. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    10. Li, Guoyuan & Chen, Anthony & Ryu, Seungkyu & Kitthamkesorn, Songyot & Xu, Xiangdong, 2024. "Modeling elasticity, similarity, stochasticity, and congestion in a network equilibrium framework using a paired combinatorial weibit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    11. Kitthamkesorn, Songyot & Chen, Anthony, 2014. "Unconstrained weibit stochastic user equilibrium model with extensions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 1-21.
    12. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    13. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    14. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    15. Nakayama, Shoichiro & Chikaraishi, Makoto, 2015. "Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 672-685.
    16. Songyot Kitthamkesorn & Anthony Chen, 2024. "Stochastic User Equilibrium Model with a Bounded Perceived Travel Time," Papers 2402.18435, arXiv.org.
    17. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
    18. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    19. Selin Damla Ahipaşaoğlu & Uğur Arıkan & Karthik Natarajan, 2019. "Distributionally Robust Markovian Traffic Equilibrium," Transportation Science, INFORMS, vol. 53(6), pages 1546-1562, November.
    20. Yao, Jia & Chen, Anthony, 2014. "An analysis of logit and weibit route choices in stochastic assignment paradox," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 31-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:91:y:2016:i:c:p:130-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.