IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v52y2006i10p1634-1646.html
   My bibliography  Save this article

Exact Solutions to Task Allocation Problems

Author

Listed:
  • Andreas Ernst

    (CSIRO Mathematical and Information Sciences, Private Bag 10, Clayton South MDC, Clayton, VIC 3169, Australia)

  • Houyuan Jiang

    (Judge Business School, University of Cambridge, Trumpington Street, Cambridge CB2 1AG, United Kingdom)

  • Mohan Krishnamoorthy

    (CSIRO Mathematical and Information Sciences, Private Bag 10, Clayton South MDC, Clayton, VIC 3169, Australia)

Abstract

The task allocation problem (TAP) is one where a number of tasks or modules need to be assigned to a set of processors or machines at minimum overall cost. The overall cost includes the communication cost between tasks that are assigned to different processors and other costs such as the assignment cost and the fixed cost of using processors. Processors may have limited or unlimited capacities to perform tasks. Task allocation has been applied to the design of distributed computing systems and also in auto-manufacturing contexts. We present several integer programs and a column generation formulation for the uncapacitated and the capacitated TAP. Computational experiments are carried out to demonstrate computational capabilities of integer programming and the column generation formulations for the uncapacitated TAP (UTAP). Excellent results are obtained for the column generation formulation. We also report some computational experience for the capacitated TAP (CTAP).

Suggested Citation

  • Andreas Ernst & Houyuan Jiang & Mohan Krishnamoorthy, 2006. "Exact Solutions to Task Allocation Problems," Management Science, INFORMS, vol. 52(10), pages 1634-1646, October.
  • Handle: RePEc:inm:ormnsc:v:52:y:2006:i:10:p:1634-1646
    DOI: 10.1287/mnsc.1060.0578
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1060.0578
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1060.0578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amitava Dutta & Gary Koehler & Andrew Whinston, 1982. "On Optimal Allocation in a Distributed Processing Environment," Management Science, INFORMS, vol. 28(8), pages 839-853, August.
    2. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    3. Hamam, Yskandar & Hindi, Khalil S., 2000. "Assignment of program modules to processors: A simulated annealing approach," European Journal of Operational Research, Elsevier, vol. 122(2), pages 509-513, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Giallombardo & Giovanna Miglionico & Houyuan Jiang, 2015. "New Reformulations for the Conflict Resolution Problem in the Scheduling of Television Commercials," Working Papers 2015/03, Cambridge Judge Business School, University of Cambridge.
    2. Asef Nazari & Dhananjay Thiruvady & Aldeida Aleti & Irene Moser, 2016. "A mixed integer linear programming model for reliability optimisation in the component deployment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1050-1060, August.
    3. Riezebos, Jan & Zhu, Stuart X., 2020. "Inventory control with seasonality of lead times," Omega, Elsevier, vol. 92(C).
    4. Michele Samorani & Manuel Laguna, 2012. "Data-Mining-Driven Neighborhood Search," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 210-227, May.
    5. A Lusa & C N Potts, 2008. "A variable neighbourhood search algorithm for the constrained task allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 812-822, June.
    6. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.
    7. Giovanni Giallombardo & Houyuan Jiang & Giovanna Miglionico, 2016. "New Formulations for the Conflict Resolution Problem in the Scheduling of Television Commercials," Operations Research, INFORMS, vol. 64(4), pages 838-848, August.
    8. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2013. "A Logarithmic Method for Reducing Binary Variables and Inequality Constraints in Solving Task Assignment Problems," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 643-653, November.
    9. Gudmundsson, Jens & Hougaard, Jens Leth & Platz, Trine Tornøe, 2023. "Decentralized task coordination," European Journal of Operational Research, Elsevier, vol. 304(2), pages 851-864.
    10. Gülpınar, Nalan & Çanakoğlu, Ethem & Branke, Juergen, 2018. "Heuristics for the stochastic dynamic task-resource allocation problem with retry opportunities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 291-303.
    11. Goutam Sen & Mohan Krishnamoorthy & Narayan Rangaraj & Vishnu Narayanan, 2016. "Facility location models to locate data in information networks: a literature review," Annals of Operations Research, Springer, vol. 246(1), pages 313-348, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    2. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    4. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    5. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    6. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    7. Anuj Mehrotra & Joseph Shantz & Michael A. Trick, 2005. "Determining newspaper marketing zones using contiguous clustering," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 82-92, February.
    8. Lentink, R.M. & Fioole, P-J. & Kroon, L.G. & van 't Woudt, C., 2003. "Applying Operations Research techniques to planning of train shunting," ERIM Report Series Research in Management ERS-2003-094-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    10. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    11. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    12. Miriam Kießling & Sascha Kurz & Jörg Rambau, 2021. "An exact column-generation approach for the lot-type design problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 741-780, October.
    13. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    14. Baptiste, Philippe & Sadykov, Ruslan, 2010. "Time-indexed formulations for scheduling chains on a single machine: An application to airborne radars," European Journal of Operational Research, Elsevier, vol. 203(2), pages 476-483, June.
    15. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    16. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    17. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    18. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    19. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    20. Taehan Lee & Sungsoo Park, 2006. "Comparison of wavelength requirements between two wavelength assignment methods in survivable WDM networks," Annals of Operations Research, Springer, vol. 146(1), pages 75-89, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:52:y:2006:i:10:p:1634-1646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.