IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v35y2024i1p294-317.html
   My bibliography  Save this article

When Is More Merrier? A Cloud-Based Architecture to Procure Impressions from Multiple Ad Exchanges

Author

Listed:
  • Leila Hosseini

    (Department of Decision & Information Sciences, C.T. Bauer College of Business, University of Houston, Houston, Texas 77204)

  • Shaojie Tang

    (Department of Information Systems, The University of Texas at Dallas, Richardson, Texas 75080)

  • Vijay Mookerjee

    (Department of Information Systems, The University of Texas at Dallas, Richardson, Texas 75080)

Abstract

We consider an ad firm that acts on behalf of advertisers to execute mobile, in-app, ad campaigns. The firm commits to provide an advertiser a specified number of ad placements (impressions) on mobile apps, usually in a specified location, and within a specified time horizon. The supply for ad space arrives, in real time, in the form of bid requests from one or more mobile ad exchanges. The ad firm needs to bid on each impression in such a way that the goals of several ongoing campaigns are met at minimum cost. The ad firm needs to execute multiple campaigns simultaneously and get its supply (for ad space, or impressions) from multiple mobile ad exchanges. By working with more than one ad exchange, the direct cost of procuring the necessary impressions can be lowered. However, this lower cost needs to be balanced with the cost of the additional computing resources needed to work with multiple mobile ad exchanges and the (possible) extra cost of meeting the minimum spend (or participation fee) imposed by each ad exchange. Here, there are two key decisions that the firm needs to make. First, it needs to select the set of mobile ad exchanges to obtain its supply; each mobile ad exchange is characterized by specific supply uncertainties, location dependent bid curves, and a participation fee. Second, for each ad exchange and location, the ad firm needs to determine its bidding policy, that is, how much to bid for each bid request. We show that the proposed near-optimal bidding strategy, the strategy to bid at each exchange-location combination, is state independent. We first solve a general problem of selecting among multiple nonidentical ad exchanges. We next analyze the special case with identical mobile ad exchanges and show that, depending on the particular parameter setting, the near-optimal number of ad exchanges and the near-optimal bid amount can be weak complements or substitutes. Finally, we propose a cloud-based architecture to procure impressions where the ad firm uses a selective bidding strategy that can further lower procurement costs. The ideas of this paper are applied to a real problem and the savings from our approach (about 33% lower cost) are demonstrated.

Suggested Citation

  • Leila Hosseini & Shaojie Tang & Vijay Mookerjee, 2024. "When Is More Merrier? A Cloud-Based Architecture to Procure Impressions from Multiple Ad Exchanges," Information Systems Research, INFORMS, vol. 35(1), pages 294-317, March.
  • Handle: RePEc:inm:orisre:v:35:y:2024:i:1:p:294-317
    DOI: 10.1287/isre.2023.1221
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/isre.2023.1221
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2023.1221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ravi Bapna & Sanjukta Das & Robert Day & Robert Garfinkel & Jan Stallaert, 2011. "A Clock-and-Offer Auction Market for Grid Resources When Bidders Face Stochastic Computational Needs," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 630-647, November.
    2. Santiago R. Balseiro & Omar Besbes & Gabriel Y. Weintraub, 2015. "Repeated Auctions with Budgets in Ad Exchanges: Approximations and Design," Management Science, INFORMS, vol. 61(4), pages 864-884, April.
    3. Leila Hosseini & Shaojie Tang & Vijay Mookerjee & Chelliah Sriskandarajah, 2020. "A Switch in Time Saves the Dime: A Model to Reduce Rental Cost in Cloud Computing," Information Systems Research, INFORMS, vol. 31(3), pages 753-775, September.
    4. Santiago R. Balseiro & Yonatan Gur, 2019. "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium," Management Science, INFORMS, vol. 65(9), pages 3952-3968, September.
    5. Santiago R. Balseiro & Ozan Candogan, 2017. "Optimal Contracts for Intermediaries in Online Advertising," Operations Research, INFORMS, vol. 65(4), pages 878-896, August.
    6. Shuai Yuan & Sanjukta Das & R. Ramesh & Chunming Qiao, 2018. "Service Agreement Trifecta: Backup Resources, Price and Penalty in the Availability-Aware Cloud," Information Systems Research, INFORMS, vol. 29(4), pages 947-964, December.
    7. Krishnamurthy Iyer & Ramesh Johari & Mukund Sundararajan, 2014. "Mean Field Equilibria of Dynamic Auctions with Learning," Management Science, INFORMS, vol. 60(12), pages 2949-2970, December.
    8. Zheng Fang & Bin Gu & Xueming Luo & Yunjie Xu, 2015. "Contemporaneous and Delayed Sales Impact of Location-Based Mobile Promotions," Information Systems Research, INFORMS, vol. 26(3), pages 552-564, September.
    9. Santiago R. Balseiro & Jon Feldman & Vahab Mirrokni & S. Muthukrishnan, 2014. "Yield Optimization of Display Advertising with Ad Exchange," Management Science, INFORMS, vol. 60(12), pages 2886-2907, December.
    10. Yunzeng Wang & Yigal Gerchak, 1996. "Periodic Review Production Models with Variable Capacity, Random Yield, and Uncertain Demand," Management Science, INFORMS, vol. 42(1), pages 130-137, January.
    11. Candace Arai Yano & Hau L. Lee, 1995. "Lot Sizing with Random Yields: A Review," Operations Research, INFORMS, vol. 43(2), pages 311-334, April.
    12. Kursad Asdemir & Nanda Kumar & Varghese S. Jacob, 2012. "Pricing Models for Online Advertising: CPM vs. CPC," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 804-822, September.
    13. Zhen Sun & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2017. "Not Just a Fad: Optimal Sequencing in Mobile In-App Advertising," Information Systems Research, INFORMS, vol. 28(3), pages 511-528, September.
    14. Amin Sayedi & Kinshuk Jerath & Marjan Baghaie, 2018. "Exclusive Placement in Online Advertising," Marketing Science, INFORMS, vol. 37(6), pages 970-986, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.
    2. Sameer Mehta & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2020. "Sustaining a Good Impression: Mechanisms for Selling Partitioned Impressions at Ad Exchanges," Information Systems Research, INFORMS, vol. 31(1), pages 126-147, March.
    3. Abhijeet Ghoshal & Radha Mookerjee & Zhen Sun, 2023. "Serving two masters? Optimizing mobile ad contracts with heterogeneous advertisers," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 618-636, February.
    4. Manmohan Aseri & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2018. "Procurement Policies for Mobile-Promotion Platforms," Management Science, INFORMS, vol. 64(10), pages 4590-4607, October.
    5. W. Jason Choi & Amin Sayedi, 2019. "Learning in Online Advertising," Marketing Science, INFORMS, vol. 38(4), pages 584-608, July.
    6. Santiago R. Balseiro & Yonatan Gur, 2019. "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium," Management Science, INFORMS, vol. 65(9), pages 3952-3968, September.
    7. Zikun Ye & Dennis J. Zhang & Heng Zhang & Renyu Zhang & Xin Chen & Zhiwei Xu, 2023. "Cold Start to Improve Market Thickness on Online Advertising Platforms: Data-Driven Algorithms and Field Experiments," Management Science, INFORMS, vol. 69(7), pages 3838-3860, July.
    8. Santiago Balseiro & Christian Kroer & Rachitesh Kumar, 2021. "Contextual Standard Auctions with Budgets: Revenue Equivalence and Efficiency Guarantees," Papers 2102.10476, arXiv.org, revised Oct 2022.
    9. Dragos Florin Ciocan & Krishnamurthy Iyer, 2021. "Tractable Equilibria in Sponsored Search with Endogenous Budgets," Operations Research, INFORMS, vol. 69(1), pages 227-244, January.
    10. Raghav Singal & Omar Besbes & Antoine Desir & Vineet Goyal & Garud Iyengar, 2022. "Shapley Meets Uniform: An Axiomatic Framework for Attribution in Online Advertising," Management Science, INFORMS, vol. 68(10), pages 7457-7479, October.
    11. Ilan Lobel, 2021. "Revenue Management and the Rise of the Algorithmic Economy," Management Science, INFORMS, vol. 67(9), pages 5389-5398, September.
    12. Veronica Marotta & Yue Wu & Kaifu Zhang & Alessandro Acquisti, 2022. "The Welfare Impact of Targeted Advertising Technologies," Information Systems Research, INFORMS, vol. 33(1), pages 131-151, March.
    13. Light, Bar & Weintraub, Gabriel, 2018. "Mean Field Equilibrium: Uniqueness, Existence, and Comparative Statics," Research Papers 3731, Stanford University, Graduate School of Business.
    14. Santiago R. Balseiro & Ozan Candogan & Huseyin Gurkan, 2021. "Multistage Intermediation in Display Advertising," Manufacturing & Service Operations Management, INFORMS, vol. 23(3), pages 714-730, May.
    15. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    16. Song, Yuyue & Wang, Yunzeng, 2017. "Periodic review inventory systems with fixed order cost and uniform random yield," European Journal of Operational Research, Elsevier, vol. 257(1), pages 106-117.
    17. Jason Rhuggenaath & Alp Akcay & Yingqian Zhang & Uzay Kaymak, 2022. "Setting Reserve Prices in Second-Price Auctions with Unobserved Bids," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2950-2967, November.
    18. Francesco Decarolis & Maris Goldmanis & Antonio Penta, 2020. "Marketing Agencies and Collusive Bidding in Online Ad Auctions," Management Science, INFORMS, vol. 66(10), pages 4433-4454, October.
    19. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    20. Qing Li & Shaohui Zheng, 2006. "Joint Inventory Replenishment and Pricing Control for Systems with Uncertain Yield and Demand," Operations Research, INFORMS, vol. 54(4), pages 696-705, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:35:y:2024:i:1:p:294-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.