IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v69y2021i1p227-244.html
   My bibliography  Save this article

Tractable Equilibria in Sponsored Search with Endogenous Budgets

Author

Listed:
  • Dragos Florin Ciocan

    (INSEAD, Technology and Operations Management, Fontainebleau 77300, France)

  • Krishnamurthy Iyer

    (Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455)

Abstract

We consider an ad network’s problem of allocating the auction for each individual impression to an optimal subset of advertisers with the goal of revenue maximization. This is a variant of bipartite matching except that advertisers may strategize by choosing their bidding profiles and their total budget. Because the ad network’s allocation rule affects the bidders’ strategies, equilibrium analysis is challenging. We show that this analysis is tractable when advertisers face a linear budget cost r j . In particular, we show that the strategy in which advertisers bid their valuations shaded by a factor of 1 + r j is an approximate equilibrium with the error decreasing with market size. This equilibrium can be interpreted as one in which a bidder facing an opportunity cost r j is guaranteed a return on investment of at least r j per dollar spent. Furthermore, in this equilibrium, the optimal allocation for the ad network, as determined from a linear program (LP), is greedy with high probability. This is in contrast with the exogenous budgets case, in which the LP optimization is challenging at practical scales. These results are evidence that, although in general such bipartite matching problems may be challenging to solve because of their high dimensionality, the optimal solution is remarkably simple at equilibrium.

Suggested Citation

  • Dragos Florin Ciocan & Krishnamurthy Iyer, 2021. "Tractable Equilibria in Sponsored Search with Endogenous Budgets," Operations Research, INFORMS, vol. 69(1), pages 227-244, January.
  • Handle: RePEc:inm:oropre:v:69:y:2021:i:1:p:227-244
    DOI: 10.1287/opre.2020.2052
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2020.2052
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2020.2052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Santiago R. Balseiro & Omar Besbes & Gabriel Y. Weintraub, 2015. "Repeated Auctions with Budgets in Ad Exchanges: Approximations and Design," Management Science, INFORMS, vol. 61(4), pages 864-884, April.
    2. Kalyan Talluri & Garrett van Ryzin, 1998. "An Analysis of Bid-Price Controls for Network Revenue Management," Management Science, INFORMS, vol. 44(11-Part-1), pages 1577-1593, November.
    3. Hamid Nazerzadeh & Amin Saberi & Rakesh Vohra, 2013. "Dynamic Pay-Per-Action Mechanisms and Applications to Online Advertising," Operations Research, INFORMS, vol. 61(1), pages 98-111, February.
    4. Dirk Bergemann & Juuso V‰lim‰ki, 2010. "The Dynamic Pivot Mechanism," Econometrica, Econometric Society, vol. 78(2), pages 771-789, March.
    5. Santiago R. Balseiro & Yonatan Gur, 2019. "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium," Management Science, INFORMS, vol. 65(9), pages 3952-3968, September.
    6. Yash Kanoria & Hamid Nazerzadeh, 2020. "Dynamic Reserve Prices for Repeated Auctions: Learning from Bids," Papers 2002.07331, arXiv.org.
    7. Krishnamurthy Iyer & Ramesh Johari & Mukund Sundararajan, 2014. "Mean Field Equilibria of Dynamic Auctions with Learning," Management Science, INFORMS, vol. 60(12), pages 2949-2970, December.
    8. Benjamin Edelman & Michael Ostrovsky & Michael Schwarz, 2007. "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords," American Economic Review, American Economic Association, vol. 97(1), pages 242-259, March.
    9. Susan Athey & Ilya Segal, 2013. "An Efficient Dynamic Mechanism," Econometrica, Econometric Society, vol. 81(6), pages 2463-2485, November.
    10. Stefanus Jasin & Sunil Kumar, 2012. "A Re-Solving Heuristic with Bounded Revenue Loss for Network Revenue Management with Customer Choice," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 313-345, May.
    11. Dragos Florin Ciocan & Vivek Farias, 2012. "Model Predictive Control for Dynamic Resource Allocation," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 501-525, August.
    12. Guillermo Gallego & Garrett van Ryzin, 1997. "A Multiproduct Dynamic Pricing Problem and Its Applications to Network Yield Management," Operations Research, INFORMS, vol. 45(1), pages 24-41, February.
    13. Hal R. Varian, 2009. "Online Ad Auctions," American Economic Review, American Economic Association, vol. 99(2), pages 430-434, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaohua Chen & Mingwei Yang & Chang Wang & Jicheng Li & Zheng Cai & Yukun Ren & Zhihua Zhu & Xiaotie Deng, 2022. "Budget-Constrained Auctions with Unassured Priors: Strategic Equivalence and Structural Properties," Papers 2203.16816, arXiv.org, revised Feb 2024.
    2. Santiago Balseiro & Anthony Kim & Mohammad Mahdian & Vahab Mirrokni, 2021. "Budget-Management Strategies in Repeated Auctions," Operations Research, INFORMS, vol. 69(3), pages 859-876, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishnamurthy Iyer & Ramesh Johari & Mukund Sundararajan, 2014. "Mean Field Equilibria of Dynamic Auctions with Learning," Management Science, INFORMS, vol. 60(12), pages 2949-2970, December.
    2. Ilan Lobel, 2021. "Revenue Management and the Rise of the Algorithmic Economy," Management Science, INFORMS, vol. 67(9), pages 5389-5398, September.
    3. Sham M. Kakade & Ilan Lobel & Hamid Nazerzadeh, 2013. "Optimal Dynamic Mechanism Design and the Virtual-Pivot Mechanism," Operations Research, INFORMS, vol. 61(4), pages 837-854, August.
    4. Andre P. Calmon & Florin D. Ciocan & Gonzalo Romero, 2021. "Revenue Management with Repeated Customer Interactions," Management Science, INFORMS, vol. 67(5), pages 2944-2963, May.
    5. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.
    6. W. Jason Choi & Amin Sayedi, 2019. "Learning in Online Advertising," Marketing Science, INFORMS, vol. 38(4), pages 584-608, July.
    7. Stefanus Jasin & Amitabh Sinha, 2015. "An LP-Based Correlated Rounding Scheme for Multi-Item Ecommerce Order Fulfillment," Operations Research, INFORMS, vol. 63(6), pages 1336-1351, December.
    8. Yanzhe (Murray) Lei & Stefanus Jasin & Amitabh Sinha, 2018. "Joint Dynamic Pricing and Order Fulfillment for E-commerce Retailers," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 269-284, May.
    9. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    10. Leila Hosseini & Shaojie Tang & Vijay Mookerjee, 2024. "When Is More Merrier? A Cloud-Based Architecture to Procure Impressions from Multiple Ad Exchanges," Information Systems Research, INFORMS, vol. 35(1), pages 294-317, March.
    11. Stefanus Jasin, 2015. "Performance of an LP-Based Control for Revenue Management with Unknown Demand Parameters," Operations Research, INFORMS, vol. 63(4), pages 909-915, August.
    12. Pornpawee Bumpensanti & He Wang, 2020. "A Re-Solving Heuristic with Uniformly Bounded Loss for Network Revenue Management," Management Science, INFORMS, vol. 66(7), pages 2993-3009, July.
    13. Tao Zhang & Quanyan Zhu, 2022. "On Incentive Compatibility in Dynamic Mechanism Design With Exit Option in a Markovian Environment," Dynamic Games and Applications, Springer, vol. 12(2), pages 701-745, June.
    14. Yicheng Bai & Omar El Housni & Billy Jin & Paat Rusmevichientong & Huseyin Topaloglu & David P. Williamson, 2023. "Fluid Approximations for Revenue Management Under High-Variance Demand," Management Science, INFORMS, vol. 69(7), pages 4016-4026, July.
    15. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2016. "Real-Time Dynamic Pricing with Minimal and Flexible Price Adjustment," Management Science, INFORMS, vol. 62(8), pages 2437-2455, August.
    16. Erdmann, Anett & Arilla, Ramón & Ponzoa, José M., 2022. "Search engine optimization: The long-term strategy of keyword choice," Journal of Business Research, Elsevier, vol. 144(C), pages 650-662.
    17. Santiago R. Balseiro & Yonatan Gur, 2019. "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium," Management Science, INFORMS, vol. 65(9), pages 3952-3968, September.
    18. Hyun-Soo Ahn & Stefanus Jasin & Philip Kaminsky & Yang Wang, 2018. "Analysis of Deterministic Control and Its Improvements for an Inventory Problem with Multiproduct Batch Differentiation," Operations Research, INFORMS, vol. 66(1), pages 58-78, 1-2.
    19. Santiago Balseiro & Christian Kroer & Rachitesh Kumar, 2021. "Contextual Standard Auctions with Budgets: Revenue Equivalence and Efficiency Guarantees," Papers 2102.10476, arXiv.org, revised Oct 2022.
    20. Zhaohua Chen & Chang Wang & Qian Wang & Yuqi Pan & Zhuming Shi & Zheng Cai & Yukun Ren & Zhihua Zhu & Xiaotie Deng, 2022. "Dynamic Budget Throttling in Repeated Second-Price Auctions," Papers 2207.04690, arXiv.org, revised Dec 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:69:y:2021:i:1:p:227-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.