Deep Learning of Spatiotemporal Patterns for Urban Mobility Prediction Using Big Data
Author
Abstract
Suggested Citation
DOI: 10.1287/isre.2021.1072
Download full text from publisher
References listed on IDEAS
- Li, Yuwei & Cassidy, Michael J., 2007. "A generalized and efficient algorithm for estimating transit route ODs from passenger counts," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 114-125, January.
- Xiping Yang & Zhiyuan Zhao & Shiwei Lu, 2016. "Exploring Spatial-Temporal Patterns of Urban Human Mobility Hotspots," Sustainability, MDPI, vol. 8(7), pages 1-18, July.
- Sameer Hasija & Zuo-Jun Max Shen & Chung-Piaw Teo, 2020. "Smart City Operations: Modeling Challenges and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 203-213, January.
- Rui Xue & Daniel (Jian) Sun & Shukai Chen, 2015. "Short-Term Bus Passenger Demand Prediction Based on Time Series Model and Interactive Multiple Model Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-11, April.
- Li, Yuwei, 2007. "A generalized and efficient algorithm for estimating transit route ODs from passenger counts," University of California Transportation Center, Working Papers qt17m7k4vm, University of California Transportation Center.
- Guo, Zhan & Wilson, Nigel H.M., 2011. "Assessing the cost of transfer inconvenience in public transport systems: A case study of the London Underground," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 91-104, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tangjian Wei & Feng Shi & Guangming Xu, 2019. "Estimation of Time-Varying Passenger Demand for High Speed Rail System," Complexity, Hindawi, vol. 2019, pages 1-24, March.
- Li, Guoyuan & Chen, Anthony, 2022. "Frequency-based path flow estimator for transit origin-destination trip matrices incorporating automatic passenger count and automatic fare collection data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
- Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
- Juha-Matti Kuusinen & Janne Sorsa & Marja-Liisa Siikonen, 2015. "The Elevator Trip Origin-Destination Matrix Estimation Problem," Transportation Science, INFORMS, vol. 49(3), pages 559-576, August.
- Jin, Meihan & Wang, Menghan & Gong, Yongxi & Liu, Yu, 2022. "Spatio-temporally constrained origin–destination inferring using public transit fare card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
- Li, Baibing, 2009. "Markov models for Bayesian analysis about transit route origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 301-310, March.
- Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
- Kumar, Anshuman Anjani & Kang, Jee Eun & Kwon, Changhyun & Nikolaev, Alexander, 2016. "Inferring origin-destination pairs and utility-based travel preferences of shared mobility system users in a multi-modal environment," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 270-291.
- Lois, David & Monzón, Andrés & Hernández, Sara, 2018. "Analysis of satisfaction factors at urban transport interchanges: Measuring travellers’ attitudes to information, security and waiting," Transport Policy, Elsevier, vol. 67(C), pages 49-56.
- Luyu Liu & Harvey J Miller, 2021. "Measuring risk of missing transfers in public transit systems using high-resolution schedule and real-time bus location data," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3140-3156, November.
- van Wee, Bert & Bohte, Wendy & Molin, Eric & Arentze, Theo & Liao, Feixiong, 2014. "Policies for synchronization in the transport–land-use system," Transport Policy, Elsevier, vol. 31(C), pages 1-9.
- Allard, Ryan F. & Moura, Filipe, 2018. "Effect of transport transfer quality on intercity passenger mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 89-107.
- Cao, Zhejing & Zhang, Xiaohu & Chua, Kelman & Yu, Honghai & Zhao, Jinhua, 2021. "E-scooter sharing to serve short-distance transit trips: A Singapore case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 177-196.
- Wasserman, Jacob L. & Taylor, Brian D., 2023. "State of the BART: Analyzing the Determinants of Bay Area Rapid Transit Use in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
- Ciyun Lin & Kang Wang & Dayong Wu & Bowen Gong, 2020. "Passenger Flow Prediction Based on Land Use around Metro Stations: A Case Study," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
- Qirui Li & Cyrus Samimi, 2023. "Assessing Human Mobility and Its Climatic and Socioeconomic Factors for Sustainable Development in Sub-Saharan Africa," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
- Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
- Mateusz Ciski & Krzysztof Rząsa & Marek Ogryzek, 2019. "Use of GIS Tools in Sustainable Heritage Management—The Importance of Data Generalization in Spatial Modeling," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
- Martin Zajac & Jiří Horák & Joaquín Osorio-Arjona & Pavel Kukuliač & James Haworth, 2022. "Public Transport Tweets in London, Madrid and Prague in the COVID-19 Period—Temporal and Spatial Differences in Activity Topics," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
- Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
More about this item
Keywords
big data; deep learning; smart transportation; predictive modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:33:y:2022:i:2:p:579-598. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.