IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/682390.html
   My bibliography  Save this article

Short-Term Bus Passenger Demand Prediction Based on Time Series Model and Interactive Multiple Model Approach

Author

Listed:
  • Rui Xue
  • Daniel (Jian) Sun
  • Shukai Chen

Abstract

Although bus passenger demand prediction has attracted increased attention during recent years, limited research has been conducted in the context of short-term passenger demand forecasting. This paper proposes an interactive multiple model (IMM) filter algorithm-based model to predict short-term passenger demand. After aggregated in 15 min interval, passenger demand data collected from a busy bus route over four months were used to generate time series. Considering that passenger demand exhibits various characteristics in different time scales, three time series were developed, named weekly, daily, and 15 min time series. After the correlation, periodicity, and stationarity analyses, time series models were constructed. Particularly, the heteroscedasticity of time series was explored to achieve better prediction performance. Finally, IMM filter algorithm was applied to combine individual forecasting models with dynamically predicted passenger demand for next interval. Different error indices were adopted for the analyses of individual and hybrid models. The performance comparison indicates that hybrid model forecasts are superior to individual ones in accuracy. Findings of this study are of theoretical and practical significance in bus scheduling.

Suggested Citation

  • Rui Xue & Daniel (Jian) Sun & Shukai Chen, 2015. "Short-Term Bus Passenger Demand Prediction Based on Time Series Model and Interactive Multiple Model Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-11, April.
  • Handle: RePEc:hin:jnddns:682390
    DOI: 10.1155/2015/682390
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/682390.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/682390.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/682390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun Wang & Faiz Currim & Sudha Ram, 2022. "Deep Learning of Spatiotemporal Patterns for Urban Mobility Prediction Using Big Data," Information Systems Research, INFORMS, vol. 33(2), pages 579-598, June.
    2. Ciyun Lin & Kang Wang & Dayong Wu & Bowen Gong, 2020. "Passenger Flow Prediction Based on Land Use around Metro Stations: A Case Study," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    3. Michael Siebert & David Ellenberger, 0. "Validation of automatic passenger counting: introducing the t-test-induced equivalence test," Transportation, Springer, vol. 0, pages 1-15.
    4. Krembsler, Jonas & Spiegelberg, Sandra & Hasenfelder, Richard & Kämpf, Nicki Lena & Winter, Thomas & Winter, Nicola & Knappe, Robert, 2024. "Fare revenue forecast in public transport: A comparative case study," Research in Transportation Economics, Elsevier, vol. 105(C).
    5. Michael Siebert & David Ellenberger, 2020. "Validation of automatic passenger counting: introducing the t-test-induced equivalence test," Transportation, Springer, vol. 47(6), pages 3031-3045, December.
    6. Tang, Tianli & Gu, Ziyuan & Yang, Yuanxuan & Sun, Haobo & Chen, Siyuan & Chen, Yuting, 2024. "A data-driven framework for natural feature profile of public transport ridership: Insights from Suzhou and Lianyungang, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:682390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.