IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v25y2014i3p547-568.html
   My bibliography  Save this article

Latent Growth Modeling for Information Systems: Theoretical Extensions and Practical Applications

Author

Listed:
  • Zhiqiang (Eric) Zheng

    (Jindal School of Management, University of Texas at Dallas, Dallas, Texas 75080)

  • Paul A. Pavlou

    (Fox School of Business, Temple University, Philadelphia, Pennsylvania 19122)

  • Bin Gu

    (W. P. Carey School of Business, Arizona State University, Tempe, Arizona 85287)

Abstract

This paper presents and extends Latent Growth Modeling (LGM) as a complementary method for analyzing longitudinal data, modeling the process of change over time, testing time-centric hypotheses, and building longitudinal theories. We first describe the basic tenets of LGM and offer guidelines for applying LGM to Information Systems (IS) research, specifically how to pose research questions that focus on change over time and how to implement LGM models to test time-centric hypotheses. Second and more important, we theoretically extend LGM by proposing a model validation criterion, namely “ d - separation ,” to evaluate why and when LGM works and test its fundamental properties and assumptions. Our d -separation criterion does not rely on any distributional assumptions of the data; it is grounded in the fundamental assumption of the theory of conditional independence. Third, we conduct extensive simulations to examine a multitude of factors that affect LGM performance. Finally, as a practical application, we apply LGM to model the relationship between word-of-mouth communication (online product reviews) and book sales over time with longitudinal 26-week data from Amazon. The paper concludes by discussing the implications of LGM for helping IS researchers develop and test longitudinal theories.

Suggested Citation

  • Zhiqiang (Eric) Zheng & Paul A. Pavlou & Bin Gu, 2014. "Latent Growth Modeling for Information Systems: Theoretical Extensions and Practical Applications," Information Systems Research, INFORMS, vol. 25(3), pages 547-568, September.
  • Handle: RePEc:inm:orisre:v:25:y:2014:i:3:p:547-568
    DOI: 10.1287/isre.2014.0528
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/isre.2014.0528
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2014.0528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wai Fong Boh & Sandra A. Slaughter & J. Alberto Espinosa, 2007. "Learning from Experience in Software Development: A Multilevel Analysis," Management Science, INFORMS, vol. 53(8), pages 1315-1331, August.
    2. Robert G. Fichman & Chris F. Kemerer, 1999. "The Illusory Diffusion of Innovation: An Examination of Assimilation Gaps," Information Systems Research, INFORMS, vol. 10(3), pages 255-275, September.
    3. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    4. Wang, Shanshan & Jank, Wolfgang & Shmueli, Galit & Smith, Paul, 2008. "Modeling Price Dynamics in eBay Auctions Using Differential Equations," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1100-1118.
    5. Richard L. Daft & Robert H. Lengel, 1986. "Organizational Information Requirements, Media Richness and Structural Design," Management Science, INFORMS, vol. 32(5), pages 554-571, May.
    6. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    7. Cooley, Thomas F & Prescott, Edward C, 1976. "Estimation in the Presence of Stochastic Parameter Variation," Econometrica, Econometric Society, vol. 44(1), pages 167-184, January.
    8. Paul A. Pavlou & David Gefen, 2004. "Building Effective Online Marketplaces with Institution-Based Trust," Information Systems Research, INFORMS, vol. 15(1), pages 37-59, March.
    9. Ling Xue & Gautam Ray & Bin Gu, 2011. "Environmental Uncertainty and IT Infrastructure Governance: A Curvilinear Relationship," Information Systems Research, INFORMS, vol. 22(2), pages 389-399, June.
    10. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    11. Daniel J. Bauer, 2003. "Estimating Multilevel Linear Models as Structural Equation Models," Journal of Educational and Behavioral Statistics, , vol. 28(2), pages 135-167, June.
    12. Daniel A. Levinthal & James G. March, 1993. "The myopia of learning," Strategic Management Journal, Wiley Blackwell, vol. 14(S2), pages 95-112, December.
    13. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1, July-Dece.
    14. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    15. John Geweke, 2007. "Bayesian Model Comparison and Validation," American Economic Review, American Economic Association, vol. 97(2), pages 60-64, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingwen Yang & Zhiqiang (Eric) Zheng & Vijay Mookerjee, 2021. "The Race for Online Reputation: Implications for Platforms, Firms, and Consumers," Information Systems Research, INFORMS, vol. 32(4), pages 1262-1280, December.
    2. Jeremy S. Wolter & Dora Bock & Jeremy Mackey & Pei Xu & Jeffery S. Smith, 2019. "Employee satisfaction trajectories and their effect on customer satisfaction and repatronage intentions," Journal of the Academy of Marketing Science, Springer, vol. 47(5), pages 815-836, September.
    3. Dmytro Babik & Rahul Singh & Xia Zhao & Eric W. Ford, 2017. "What you think and what I think: Studying intersubjectivity in knowledge artifacts evaluation," Information Systems Frontiers, Springer, vol. 19(1), pages 31-56, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Hanck & Robert Czudaj, 2015. "Nonstationary-volatility robust panel unit root tests and the great moderation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 161-187, April.
    2. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    3. repec:zbw:rwirep:0434 is not listed on IDEAS
    4. Guowei Cui & Kazuhiko Hayakawa & Shuichi Nagata & Takashi Yamagata, 2018. "A robust approach to heteroskedasticity, error serial correlation and slope heterogeneity for large linear panel data models with interactive effects," ISER Discussion Paper 1037r, Institute of Social and Economic Research, Osaka University, revised Jun 2019.
    5. Kim, Seheon & Rasouli, Soora & Timmermans, Harry & Yang, Dujuan, 2018. "Estimating panel effects in probabilistic representations of dynamic decision trees using bayesian generalized linear mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 168-184.
    6. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    7. Christoph Hanck & Robert Czudaj, 2013. "Nonstationary-Volatility Robust Panel Unit Root Tests and the Great Moderation," Ruhr Economic Papers 0434, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    8. Majumdar, Sumit K., 2016. "Debt and communications technology diffusion: Retrospective evidence," Research Policy, Elsevier, vol. 45(2), pages 458-474.
    9. Aida, Takeshi, 2015. "Spatial vs. Social Network Effects in Risk Sharing," Working Papers 89, JICA Research Institute.
    10. Aleksey Oshchepkov & Anna Shirokanova, 2020. "Multilevel Modeling For Economists: Why, When And How," HSE Working papers WP BRP 233/EC/2020, National Research University Higher School of Economics.
    11. Gilberto Libânio & Sueli Moro & Anna Carolina Londe, 2016. "Export quality and economic growth in the 2000s : new empirical evidence," Textos para Discussão Cedeplar-UFMG 543, Cedeplar, Universidade Federal de Minas Gerais.
    12. Arturas Juodis, 2013. "Cointegration Testing in Panel VAR Models Under Partial Identification and Spatial Dependence," UvA-Econometrics Working Papers 13-08, Universiteit van Amsterdam, Dept. of Econometrics.
    13. Giuliani, Elisa & Martinelli, Arianna & Rabellotti, Roberta, 2016. "Is Co-Invention Expediting Technological Catch Up? A Study of Collaboration between Emerging Country Firms and EU Inventors," World Development, Elsevier, vol. 77(C), pages 192-205.
    14. repec:rri:wpaper:201303 is not listed on IDEAS
    15. Joseph P. Byrne & Alexandros Kontonikas & Alberto Montagnoli, 2013. "International Evidence on the New Keynesian Phillips Curve Using Aggregate and Disaggregate Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(5), pages 913-932, August.
    16. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    17. Francesca Iorio & Stefano Fachin, 2014. "Savings and investments in the OECD: a panel cointegration study with a new bootstrap test," Empirical Economics, Springer, vol. 46(4), pages 1271-1300, June.
    18. Karaman Örsal, Deniz Dilan & Droge, Bernd, 2014. "Panel cointegration testing in the presence of a time trend," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 377-390.
    19. Vasudeva N. R. Murthy & Emmanuel Anoruo, 2009. "Are Per Capita Real GDP Series in African Countries Non-stationary or Non-linear? What does Empirical Evidence Reveal?," Economics Bulletin, AccessEcon, vol. 29(4), pages 2492-2504.
    20. Alexander Klemm & Stefan Parys, 2012. "Empirical evidence on the effects of tax incentives," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(3), pages 393-423, June.
    21. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    22. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:25:y:2014:i:3:p:547-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.