IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v38y2008i1p40-50.html
   My bibliography  Save this article

Coca-Cola Enterprises Optimizes Vehicle Routes for Efficient Product Delivery

Author

Listed:
  • Goos Kant

    (ORTEC, 2800 AL Gouda, The Netherlands and Faculty of Economics and Business Administration, Tilburg University, 5000 LE Tilburg, The Netherlands)

  • Michael Jacks

    (Coca-Cola Enterprises Inc., Atlanta, Georgia)

  • Corné Aantjes

    (ORTEC USA, Six Concourse Parkway, Atlanta, Georgia 30328)

Abstract

In 2004 and 2005, Coca-Cola Enterprises (CCE)---the world's largest bottler and distributor of Coca-Cola products---implemented ORTEC's vehicle-routing software. Today, over 300 CCE dispatchers use this software daily to plan the routes of approximately 10,000 trucks. In addition to handling nonstandard constraints, the implementation is notable for its progressive transition from the prior business practice. CCE has realized an annual cost saving of $45 million and major improvements in customer service. This approach has been so successful that Coca-Cola has extended it beyond CCE to other Coca-Cola bottling companies and beer distributors.

Suggested Citation

  • Goos Kant & Michael Jacks & Corné Aantjes, 2008. "Coca-Cola Enterprises Optimizes Vehicle Routes for Efficient Product Delivery," Interfaces, INFORMS, vol. 38(1), pages 40-50, February.
  • Handle: RePEc:inm:orinte:v:38:y:2008:i:1:p:40-50
    DOI: 10.1287/inte.1070.0331
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1070.0331
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1070.0331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    2. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    3. A Poot & G Kant & A P M Wagelmans, 2002. "A savings based method for real-life vehicle routing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 57-68, January.
    4. Tan, C.C.R. & Beasley, J.E., 1984. "A heuristic algorithm for the period vehicle routing problem," Omega, Elsevier, vol. 12(5), pages 497-504.
    5. Kant, Goos, 2006. "Ruim baan! : OR en IT in transport en logistiek," Other publications TiSEM c736f523-3587-40ce-8d17-9, Tilburg University, School of Economics and Management.
    6. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoyuan Hu & Ying Zhang & Jiangwen Wei & Yang Zhan & Xinhui Zhang & Shaojian Huang & Guangrui Ma & Yuming Deng & Siwei Jiang, 2022. "Alibaba Vehicle Routing Algorithms Enable Rapid Pick and Delivery," Interfaces, INFORMS, vol. 52(1), pages 27-41, January.
    2. Sanjay L. Ahire & John B. Jensen, 2017. "Snider Tire Optimizes Its Customers-Stores-Plants Transportation Network," Interfaces, INFORMS, vol. 47(2), pages 150-162, April.
    3. Andreas Fink & Natalia Kliewer & Dirk Mattfeld & Lars Mönch & Franz Rothlauf & Guido Schryen & Leena Suhl & Stefan Voß, 2014. "Model-Based Decision Support in Manufacturing and Service Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(1), pages 17-24, February.
    4. Hein Fleuren & Chris Goossens & Marco Hendriks & Marie-Christine Lombard & Ineke Meuffels & John Poppelaars, 2013. "Supply Chain–Wide Optimization at TNT Express," Interfaces, INFORMS, vol. 43(1), pages 5-20, February.
    5. A A Juan & J Faulin & J Jorba & D Riera & D Masip & B Barrios, 2011. "On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1085-1097, June.
    6. Emrah Demir & Tom Van Woensel & Ton de Kok, 2014. "Multidepot Distribution Planning at Logistics Service Provider Nabuurs B.V," Interfaces, INFORMS, vol. 44(6), pages 591-604, December.
    7. Anuj Mittal & Caroline C. Krejci & Teri J. Craven, 2018. "Logistics Best Practices for Regional Food Systems: A Review," Sustainability, MDPI, vol. 10(1), pages 1-44, January.
    8. Rodrigo Linfati & Fernando Yáñez-Concha & John Willmer Escobar, 2022. "Mathematical Models for the Vehicle Routing Problem by Considering Balancing Load and Customer Compactness," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    9. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    10. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aderemi Oluyinka Adewumi & Olawale Joshua Adeleke, 2018. "A survey of recent advances in vehicle routing problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 155-172, February.
    2. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    3. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    4. Kritikos, Manolis N. & Ioannou, George, 2010. "The balanced cargo vehicle routing problem with time windows," International Journal of Production Economics, Elsevier, vol. 123(1), pages 42-51, January.
    5. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    6. Cruijssen, F., 2006. "Horizontal cooperation in transport and logistics," Other publications TiSEM ab6dbe68-aebc-4b03-8eea-d, Tilburg University, School of Economics and Management.
    7. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    8. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    9. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    10. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2022. "A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning," Mathematics, MDPI, vol. 10(15), pages 1-70, July.
    11. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    12. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    13. Van Breedam, Alex, 2002. "A parametric analysis of heuristics for the vehicle routing problem with side-constraints," European Journal of Operational Research, Elsevier, vol. 137(2), pages 348-370, March.
    14. Gerald Senarclens de Grancy & Marc Reimann, 2016. "Vehicle routing problems with time windows and multiple service workers: a systematic comparison between ACO and GRASP," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 29-48, March.
    15. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    16. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    17. Uchoa, Eduardo & Pecin, Diego & Pessoa, Artur & Poggi, Marcus & Vidal, Thibaut & Subramanian, Anand, 2017. "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 845-858.
    18. Phan Nguyen Ky Phuc & Nguyen Le Phuong Thao, 2021. "Ant Colony Optimization for Multiple Pickup and Multiple Delivery Vehicle Routing Problem with Time Window and Heterogeneous Fleets," Logistics, MDPI, vol. 5(2), pages 1-13, May.
    19. Brandstätter, Christian & Reimann, Marc, 2018. "The Line-haul Feeder Vehicle Routing Problem: Mathematical model formulation and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 157-170.
    20. Samuel Reong & Hui-Ming Wee & Yu-Lin Hsiao, 2022. "20 Years of Particle Swarm Optimization Strategies for the Vehicle Routing Problem: A Bibliometric Analysis," Mathematics, MDPI, vol. 10(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:38:y:2008:i:1:p:40-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.