IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i5p952-965.html
   My bibliography  Save this article

Interpretable Matrix Completion: A Discrete Optimization Approach

Author

Listed:
  • Dimitris Bertsimas

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

  • Michael Lingzhi Li

    (Technology and Operations Management, Harvard Business School, Boston, Massachusetts 02163)

Abstract

We consider the problem of matrix completion on an n × m matrix. We introduce the problem of interpretable matrix completion that aims to provide meaningful insights for the low-rank matrix using side information. We show that the problem can be reformulated as an optimization problem with a convex objective and binary variables. We design an algorithm called OptComplete, based on a novel concept of stochastic cutting planes to enable efficient scaling of the algorithm up to matrices of sizes n = 10 6 and m = 10 6 . We prove that OptComplete converges to an optimal solution of the interpretable matrix completion problem with exponentially vanishing failure probability. We report experiments on both synthetic and real-world data sets that show that OptComplete has favorable scaling behavior and accuracy when compared with state-of-the-art methods for other types of matrix completion while providing insight on the factors that affect the matrix.

Suggested Citation

  • Dimitris Bertsimas & Michael Lingzhi Li, 2023. "Interpretable Matrix Completion: A Discrete Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 952-965, September.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:5:p:952-965
    DOI: 10.1287/ijoc.2022.0022
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.0022
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.0022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bertsimas, Dimitris & Copenhaver, Martin S., 2018. "Characterization of the equivalence of robustification and regularization in linear and matrix regression," European Journal of Operational Research, Elsevier, vol. 270(3), pages 931-942.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    2. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    3. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "Robust prediction of domain compositions from uncertain data using isometric logratio transformations in a penalized multivariate Fay–Herriot model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 65-96, February.
    4. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    5. Jan Pablo Burgard & Joscha Krause & Dennis Kreber & Domingo Morales, 2021. "The generalized equivalence of regularization and min–max robustification in linear mixed models," Statistical Papers, Springer, vol. 62(6), pages 2857-2883, December.
    6. Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
    7. Jack Dunn & Ying Daisy Zhuo, 2022. "Detecting Racial Bias in Jury Selection," SN Operations Research Forum, Springer, vol. 3(3), pages 1-17, September.
    8. Jan Pablo Burgard & Joscha Krause & Dennis Kreber, 2019. "Regularized Area-level Modelling for Robust Small Area Estimation in the Presence of Unknown Covariate Measurement Errors," Research Papers in Economics 2019-04, University of Trier, Department of Economics.
    9. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2019. "Penalized Small Area Models for the Combination of Unit- and Area-level Data," Research Papers in Economics 2019-05, University of Trier, Department of Economics.
    10. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
    11. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    12. Vladimir Dvorkin, 2024. "Regression Equilibrium in Electricity Markets," Papers 2405.17753, arXiv.org, revised Jan 2025.
    13. Bertsimas, Dimitris & Koukouvinos, Thodoris, 2024. "Robust linear algebra," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1174-1184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:5:p:952-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.