IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v3y2022i3d10.1007_s43069-022-00151-x.html
   My bibliography  Save this article

Detecting Racial Bias in Jury Selection

Author

Listed:
  • Jack Dunn

    (Interpretable AI)

  • Ying Daisy Zhuo

    (Interpretable AI)

Abstract

To support the 2019 U.S. Supreme Court case “Flowers v. Mississippi”, APM Reports collated historical court records to assess whether the State exhibited a racial bias in striking potential jurors. This analysis used backward stepwise logistic regression to conclude that race was a significant factor, however this method for selecting relevant features is only a heuristic, and additionally cannot consider interactions between features. We apply Optimal Feature Selection to identify the globally optimal subset of features and affirm that there is significant evidence of racial bias in the strike decisions. We also use Optimal Classification Trees to segment the juror population subgroups with similar characteristics and probability of being struck, and find that three of these subgroups exhibit significant racial disparity in strike rate, pinpointing specific areas of bias in the dataset.

Suggested Citation

  • Jack Dunn & Ying Daisy Zhuo, 2022. "Detecting Racial Bias in Jury Selection," SN Operations Research Forum, Springer, vol. 3(3), pages 1-17, September.
  • Handle: RePEc:spr:snopef:v:3:y:2022:i:3:d:10.1007_s43069-022-00151-x
    DOI: 10.1007/s43069-022-00151-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-022-00151-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-022-00151-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Arnold & Will Dobbie & Crystal S Yang, 2018. "Racial Bias in Bail Decisions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(4), pages 1885-1932.
    2. Bertsimas, Dimitris & Copenhaver, Martin S., 2018. "Characterization of the equivalence of robustification and regularization in linear and matrix regression," European Journal of Operational Research, Elsevier, vol. 270(3), pages 931-942.
    3. Alberto Alesina & Eliana La Ferrara, 2014. "A Test of Racial Bias in Capital Sentencing," American Economic Review, American Economic Association, vol. 104(11), pages 3397-3433, November.
    4. Shamena Anwar & Patrick Bayer & Randi Hjalmarsson, 2012. "The Impact of Jury Race in Criminal Trials," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(2), pages 1017-1055.
    5. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ash, Elliott & Asher, Sam & Bhowmick, Aditi & Bhupatiraju, Sandeep & Chen, Daniel L. & Devi, Tatanya & Goessmann, Christoph & Novosad, Paul & Siddiqi, Bilal, 2022. "Measuring Gender and Religious Bias in the Indian Judiciary," TSE Working Papers 22-1395, Toulouse School of Economics (TSE).
    2. LaVoice, Jessica & Vamossy, Domonkos F., 2024. "Racial disparities in debt collection," Journal of Banking & Finance, Elsevier, vol. 164(C).
    3. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    4. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "Robust prediction of domain compositions from uncertain data using isometric logratio transformations in a penalized multivariate Fay–Herriot model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 65-96, February.
    5. Jan Pablo Burgard & Joscha Krause & Dennis Kreber & Domingo Morales, 2021. "The generalized equivalence of regularization and min–max robustification in linear mixed models," Statistical Papers, Springer, vol. 62(6), pages 2857-2883, December.
    6. Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
    7. Jan Pablo Burgard & Joscha Krause & Dennis Kreber, 2019. "Regularized Area-level Modelling for Robust Small Area Estimation in the Presence of Unknown Covariate Measurement Errors," Research Papers in Economics 2019-04, University of Trier, Department of Economics.
    8. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2019. "Penalized Small Area Models for the Combination of Unit- and Area-level Data," Research Papers in Economics 2019-05, University of Trier, Department of Economics.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    11. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    12. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    13. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    14. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    15. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    16. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    17. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    18. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:3:y:2022:i:3:d:10.1007_s43069-022-00151-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.