IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.17753.html
   My bibliography  Save this paper

Regression Equilibrium in Electricity Markets

Author

Listed:
  • Vladimir Dvorkin

Abstract

In two-stage electricity markets, renewable power producers enter the day-ahead market with a forecast of future power generation and then reconcile any forecast deviation in the real-time market at a penalty. The choice of the forecast model is thus an important strategy decision for renewable power producers as it affects financial performance. In electricity markets with large shares of renewable generation, the choice of the forecast model impacts not only individual performance but also outcomes for other producers. In this paper, we argue for the existence of a competitive regression equilibrium in two-stage electricity markets in terms of the parameters of private forecast models informing the participation strategies of renewable power producers. In our model, renewables optimize the forecast against the day-ahead and real-time prices, thereby maximizing the average profits across the day-ahead and real-time markets. By doing so, they also implicitly enhance the temporal cost coordination of day-ahead and real-time markets. We base the equilibrium analysis on the theory of variational inequalities, providing results on the existence and uniqueness of regression equilibrium in energy-only markets. We also devise two methods to compute regression equilibrium: centralized optimization and a decentralized ADMM-based algorithm.

Suggested Citation

  • Vladimir Dvorkin, 2024. "Regression Equilibrium in Electricity Markets," Papers 2405.17753, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2405.17753
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.17753
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bertsimas, Dimitris & Copenhaver, Martin S., 2018. "Characterization of the equivalence of robustification and regularization in linear and matrix regression," European Journal of Operational Research, Elsevier, vol. 270(3), pages 931-942.
    2. Geoffrey Pritchard & Golbon Zakeri & Andrew Philpott, 2010. "A Single-Settlement, Energy-Only Electric Power Market for Unpredictable and Intermittent Participants," Operations Research, INFORMS, vol. 58(4-part-2), pages 1210-1219, August.
    3. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ordoudis, Christos & Delikaraoglou, Stefanos & Kazempour, Jalal & Pinson, Pierre, 2020. "Market-based coordination of integrated electricity and natural gas systems under uncertain supply," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1105-1119.
    2. Xin Shi & Alberto J. Lamadrid L. & Luis F. Zuluaga, 2021. "Revenue Adequate Prices for Chance-Constrained Electricity Markets with Variable Renewable Energy Sources," Papers 2105.01233, arXiv.org.
    3. Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.
    4. Mays, Jacob, 2024. "Sequential pricing of electricity," Energy Economics, Elsevier, vol. 137(C).
    5. Bjørndal, Endre & Bjørndal, Mette & Midthun, Kjetil & Tomasgard, Asgeir, 2018. "Stochastic electricity dispatch: A challenge for market design," Energy, Elsevier, vol. 150(C), pages 992-1005.
    6. Zhang, Weiqi & Zavala, Victor M., 2022. "Remunerating space–time, load-shifting flexibility from data centers in electricity markets," Applied Energy, Elsevier, vol. 326(C).
    7. Bjørndal, Endre & Bjørndal, Mette & Midthun, Kjetil & Tomasgard, Asgeir, 2016. "Stochastic Electricity Dispatch: A challenge for market design," Discussion Papers 2016/11, Norwegian School of Economics, Department of Business and Management Science.
    8. Hohl, Cody & Lo Prete, Chiara & Radhakrishnan, Ashish & Webster, Mort, 2023. "Intraday markets, wind integration and uplift payments in a regional U.S. power system," Energy Policy, Elsevier, vol. 175(C).
    9. Morales, J.M. & Muñoz, M.A. & Pineda, S., 2023. "Prescribing net demand for two-stage electricity generation scheduling," Operations Research Perspectives, Elsevier, vol. 10(C).
    10. Philip A. Tominac & Victor M. Zavala, 2020. "Economic Properties of Multi-Product Supply Chains," Papers 2006.03467, arXiv.org, revised Jul 2020.
    11. Yankai Cao & Carl D. Laird & Victor M. Zavala, 2016. "Clustering-based preconditioning for stochastic programs," Computational Optimization and Applications, Springer, vol. 64(2), pages 379-406, June.
    12. Bjørndal, Endre & Bjørndal, Mette & Midthun, Kjetil & Zakeri, Golbon, 2016. "Congestion Management in a Stochastic Dispatch Model for Electricity Markets," Discussion Papers 2016/12, Norwegian School of Economics, Department of Business and Management Science.
    13. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    14. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    15. Javad Khazaei & Golbon Zakeri & Shmuel S. Oren, 2017. "Single and Multisettlement Approaches to Market Clearing Under Demand Uncertainty," Operations Research, INFORMS, vol. 65(5), pages 1147-1164, October.
    16. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    17. Dimitris Bertsimas & Michael Lingzhi Li, 2023. "Interpretable Matrix Completion: A Discrete Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 952-965, September.
    18. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    19. Mete Şeref Ahunbay & Martin Bichler & Johannes Knörr, 2024. "Challenges in Designing Electricity Spot Markets," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
    20. Sarfati, Mahir & Hesamzadeh, Mohammad Reza & Biggar, Darryl R. & Baldick, Ross, 2018. "Probabilistic pricing of ramp service in power systems with wind and solar generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 851-862.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.17753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.