IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i2p512-528.html
   My bibliography  Save this article

Enhancing Stochastic Kriging Metamodels with Gradient Estimators

Author

Listed:
  • Xi Chen

    (Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia 23284)

  • Bruce E. Ankenman

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

  • Barry L. Nelson

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

Abstract

Stochastic kriging is a new metamodeling technique for effectively representing the mean response surface implied by a stochastic simulation; it takes into account both stochastic simulation noise and uncertainty about the underlying response surface of interest. We show theoretically, through some simplified models, that incorporating gradient estimators into stochastic kriging tends to significantly improve surface prediction. To address the issue of which type of gradient estimator to use, when there is a choice, we briefly review stochastic gradient estimation techniques; we then focus on the properties of infinitesimal perturbation analysis and likelihood ratio/score function gradient estimators and make recommendations. To conclude, we use simulation experiments with no simplifying assumptions to demonstrate that the use of stochastic kriging with gradient estimators provides more reliable prediction results than stochastic kriging alone.

Suggested Citation

  • Xi Chen & Bruce E. Ankenman & Barry L. Nelson, 2013. "Enhancing Stochastic Kriging Metamodels with Gradient Estimators," Operations Research, INFORMS, vol. 61(2), pages 512-528, April.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:2:p:512-528
    DOI: 10.1287/opre.1120.1143
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1143
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    2. Siem, A.Y.D., 2008. "Property preservation and quality measures in meta-models," Other publications TiSEM 259d3ed2-1a23-48fe-8af8-2, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleijnen, Jack P.C. & Mehdad, E., 2014. "Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039)," Discussion Paper 2014-012, Tilburg University, Center for Economic Research.
    2. Mike Ludkovski & Yuri Saporito, 2020. "KrigHedge: Gaussian Process Surrogates for Delta Hedging," Papers 2010.08407, arXiv.org, revised Jan 2022.
    3. Peter Salemi & Jeremy Staum & Barry L. Nelson, 2019. "Generalized Integrated Brownian Fields for Simulation Metamodeling," Operations Research, INFORMS, vol. 67(3), pages 874-891, May.
    4. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    5. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    6. Michael C. Fu & Huashuai Qu, 2014. "Regression Models Augmented with Direct Stochastic Gradient Estimators," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 484-499, August.
    7. Kleijnen, Jack P.C. & Mehdad, Ehsan, 2014. "Multivariate versus univariate Kriging metamodels for multi-response simulation models," European Journal of Operational Research, Elsevier, vol. 236(2), pages 573-582.
    8. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    9. Cheng Li & Siyang Gao & Jianzhong Du, 2023. "Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 386-402, March.
    10. Xin Yun & L. Jeff Hong & Guangxin Jiang & Shouyang Wang, 2019. "On gamma estimation via matrix kriging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 393-410, August.
    11. Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
    12. Xiqun (Michael) Chen & Xiang He & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2019. "A Bayesian Stochastic Kriging Optimization Model Dealing with Heteroscedastic Simulation Noise for Freeway Traffic Management," Transportation Science, INFORMS, vol. 53(2), pages 545-565, March.
    13. Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    2. Ehsan Mehdad & Jack P.C. Kleijnen, 2018. "Stochastic intrinsic Kriging for simulation metamodeling," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 34(3), pages 322-337, May.
    3. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    4. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    5. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    6. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Other publications TiSEM 4915047b-afe4-4fc7-8a1c-4, Tilburg University, School of Economics and Management.
    7. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    8. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    9. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    10. Russell R. Barton & Barry L. Nelson & Wei Xie, 2014. "Quantifying Input Uncertainty via Simulation Confidence Intervals," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 74-87, February.
    11. Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
    12. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    13. Jack P. C. Kleijnen, 2017. "Comment on Park et al.’s “Robust Kriging in computer experiments”," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 739-740, June.
    14. Mike Ludkovski & Yuri Saporito, 2020. "KrigHedge: Gaussian Process Surrogates for Delta Hedging," Papers 2010.08407, arXiv.org, revised Jan 2022.
    15. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    16. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    17. Cheng Li & Siyang Gao & Jianzhong Du, 2023. "Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 386-402, March.
    18. J P C Kleijnen & W C M van Beers, 2013. "Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
    19. Kleijnen, Jack P.C. & Mehdad, E. & van Beers, W.C.M., 2012. "Convex and monotonic bootstrapped kriging," Other publications TiSEM 972e079d-0209-45bf-b25e-a, Tilburg University, School of Economics and Management.
    20. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:2:p:512-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.