IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p243-261.html
   My bibliography  Save this article

Radius of Robust Feasibility for Mixed-Integer Problems

Author

Listed:
  • Frauke Liers

    (Discrete Optimization, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Energie Campus Nürnberg, 90429 Nürnberg, Germany)

  • Lars Schewe

    (School of Mathematics, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom)

  • Johannes Thürauf

    (Discrete Optimization, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Energie Campus Nürnberg, 90429 Nürnberg, Germany)

Abstract

For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal size of the uncertainty set such that robust feasibility of the MIP can be guaranteed. The approaches for the RRF in the literature are restricted to continuous optimization problems. We first analyze relations between the RRF of a MIP and its continuous linear (LP) relaxation. In particular, we derive conditions under which a MIP and its LP relaxation have the same RRF. Afterward, we extend the notion of the RRF such that it can be applied to a large variety of optimization problems and uncertainty sets. In contrast to the setting commonly used in the literature, we consider for every constraint a potentially different uncertainty set that is not necessarily full-dimensional. Thus, we generalize the RRF to MIPs and to include safe variables and constraints; that is, where uncertainties do not affect certain variables or constraints. In the extended setting, we again analyze relations between the RRF for a MIP and its LP relaxation. Afterward, we present methods for computing the RRF of LPs and of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF. Summary of Contribution: Robust optimization is an important field of operations research due to its capability of protecting optimization problems from data uncertainties that are usually defined via so-called uncertainty sets. Intensive research has been conducted in developing algorithmically tractable reformulations of the usually semi-infinite robust optimization problems. However, in applications it also important to construct appropriate uncertainty sets (i.e., prohibiting too conservative, intractable, or even infeasible robust optimization problems due to the choice of the uncertainty set). In doing so, it is useful to know the maximal “size” of a given uncertainty set such that a robust feasible solution still exists. In this paper, we study one notion of “size”: the radius of robust feasibility (RRF). We contribute on the theoretical side by generalizing the RRF to MIPs as well as to include “safe” variables and constraints (i.e., where uncertainties do not affect certain variables or constraints). This allows to apply the RRF to many applications since safe variables and constraints exist in most applications. We also provide first methods for computing the RRF of LPs as well as of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF.

Suggested Citation

  • Frauke Liers & Lars Schewe & Johannes Thürauf, 2022. "Radius of Robust Feasibility for Mixed-Integer Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 243-261, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:243-261
    DOI: 10.1287/ijoc.2020.1030
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1030
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Structural properties of feasible bookings in the European entry–exit gas market system," 4OR, Springer, vol. 18(2), pages 197-218, June.
    2. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.
    3. Siegfried Schaible, 1976. "Fractional Programming. I, Duality," Management Science, INFORMS, vol. 22(8), pages 858-867, April.
    4. Emilio Carrizosa & Stefan Nickel, 2003. "Robust facility location," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(2), pages 331-349, November.
    5. T. D. Chuong & V. Jeyakumar, 2017. "An Exact Formula for Radius of Robust Feasibility of Uncertain Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 203-226, April.
    6. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    7. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    8. Siegfried Schaible, 1976. "Fractional Programming. II, On Dinkelbach's Algorithm," Management Science, INFORMS, vol. 22(8), pages 868-873, April.
    9. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2015. "Robust solutions to multi-objective linear programs with uncertain data," European Journal of Operational Research, Elsevier, vol. 242(3), pages 730-743.
    10. Crespi, Giovanni P. & Kuroiwa, Daishi & Rocca, Matteo, 2018. "Robust optimization: Sensitivity to uncertainty in scalar and vector cases, with applications," Operations Research Perspectives, Elsevier, vol. 5(C), pages 113-119.
    11. Siegfried Schaible, 1976. "Duality in Fractional Programming: A Unified Approach," Operations Research, INFORMS, vol. 24(3), pages 452-461, June.
    12. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2022. "The radius of robust feasibility of uncertain mathematical programs: A Survey and recent developments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 749-763.
    2. M. A. Goberna & V. Jeyakumar & G. Li, 2021. "Calculating Radius of Robust Feasibility of Uncertain Linear Conic Programs via Semi-definite Programs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 597-622, May.
    3. C. Singh & M.A. Hanson, 1991. "Multiobjective fractional programming duality theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 925-933, December.
    4. T Peña & P Lara & C Castrodeza, 2009. "Multiobjective stochastic programming for feed formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1738-1748, December.
    5. Thai Doan Chuong, 2021. "Radius of Robust Global Error Bound for Piecewise Linear Inequality Systems," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 68-82, October.
    6. Paula Alexandra Amaral & Immanuel M. Bomze, 2019. "Nonconvex min–max fractional quadratic problems under quadratic constraints: copositive relaxations," Journal of Global Optimization, Springer, vol. 75(2), pages 227-245, October.
    7. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    8. Xiaojun Lei & Zhian Liang, 2008. "Study on the Duality between MFP and ACP," Modern Applied Science, Canadian Center of Science and Education, vol. 2(6), pages 1-81, November.
    9. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    10. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    11. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    12. Jornada, Daniel & Leon, V. Jorge, 2016. "Biobjective robust optimization over the efficient set for Pareto set reduction," European Journal of Operational Research, Elsevier, vol. 252(2), pages 573-586.
    13. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    14. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.
    15. T. D. Chuong & V. Jeyakumar, 2017. "An Exact Formula for Radius of Robust Feasibility of Uncertain Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 203-226, April.
    16. Daniel Woolnough & Niroshan Jeyakumar & Guoyin Li & Clement T Loy & Vaithilingam Jeyakumar, 2022. "Robust Optimization and Data Classification for Characterization of Huntington Disease Onset via Duality Methods," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 649-675, June.
    17. Oleksii Ursulenko & Sergiy Butenko & Oleg Prokopyev, 2013. "A global optimization algorithm for solving the minimum multiple ratio spanning tree problem," Journal of Global Optimization, Springer, vol. 56(3), pages 1029-1043, July.
    18. Maziar Sahamkhadam & Andreas Stephan, 2023. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for global financial crises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2139-2166, December.
    19. Yu, Pengfei & Gao, Ruotian & Xing, Wenxun, 2021. "Maximizing perturbation radii for robust convex quadratically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 293(1), pages 50-64.
    20. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:243-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.