IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v22y1976i8p868-873.html
   My bibliography  Save this article

Fractional Programming. II, On Dinkelbach's Algorithm

Author

Listed:
  • Siegfried Schaible

    (University of Cologne and Stanford University)

Abstract

Dinkelbach's algorithm [Dinkelbach, W. 1967. On nonlinear fractional programming. Management Sci. 13 492-498.] solving the parametric equivalent of a fractional program is investigated. It is shown that the algorithm converges superlinearly and often (locally) quadratically. A priori and a posteriori error estimates are derived. Using those estimates and duality as introduced in Part I, a revised version of the algorithm is proposed. In addition, a similar algorithm is presented where, in contrast to Dinkelbach's procedure, the rate of convergence is still controllable. Error estimates are derived also for this algorithm.

Suggested Citation

  • Siegfried Schaible, 1976. "Fractional Programming. II, On Dinkelbach's Algorithm," Management Science, INFORMS, vol. 22(8), pages 868-873, April.
  • Handle: RePEc:inm:ormnsc:v:22:y:1976:i:8:p:868-873
    DOI: 10.1287/mnsc.22.8.868
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.22.8.868
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.22.8.868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    2. Joaquim Júdice & Valentina Sessa & Masao Fukushima, 2022. "Solution of Fractional Quadratic Programs on the Simplex and Application to the Eigenvalue Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 545-573, June.
    3. T Peña & P Lara & C Castrodeza, 2009. "Multiobjective stochastic programming for feed formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1738-1748, December.
    4. Garrido, Rodrigo A. & Bronfman, Andrés C., 2017. "Equity and social acceptability in multiple hazardous materials routing through urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 244-260.
    5. R. Yamamoto & H. Konno, 2007. "An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 241-255, May.
    6. Paula Alexandra Amaral & Immanuel M. Bomze, 2019. "Nonconvex min–max fractional quadratic problems under quadratic constraints: copositive relaxations," Journal of Global Optimization, Springer, vol. 75(2), pages 227-245, October.
    7. Xiang-Kai Sun & Xian-Jun Long & Yi Chai, 2015. "Sequential Optimality Conditions for Fractional Optimization with Applications to Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 479-499, February.
    8. Frauke Liers & Lars Schewe & Johannes Thürauf, 2022. "Radius of Robust Feasibility for Mixed-Integer Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 243-261, January.
    9. Meijia Yang & Yong Xia & Jiulin Wang & Jiming Peng, 2018. "Efficiently solving total least squares with Tikhonov identical regularization," Computational Optimization and Applications, Springer, vol. 70(2), pages 571-592, June.
    10. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    11. Bram L. Gorissen, 2015. "Robust Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 508-528, August.
    12. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:22:y:1976:i:8:p:868-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.