IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v173y2017i1d10.1007_s10957-017-1067-6.html
   My bibliography  Save this article

An Exact Formula for Radius of Robust Feasibility of Uncertain Linear Programs

Author

Listed:
  • T. D. Chuong

    (University of New South Wales)

  • V. Jeyakumar

    (University of New South Wales)

Abstract

We present an exact formula for the radius of robust feasibility of uncertain linear programs with a compact and convex uncertainty set. The radius of robust feasibility provides a value for the maximal ‘size’ of an uncertainty set under which robust feasibility of the uncertain linear program can be guaranteed. By considering spectrahedral uncertainty sets, we obtain numerically tractable radius formulas for commonly used uncertainty sets of robust optimization, such as ellipsoids, balls, polytopes and boxes. In these cases, we show that the radius of robust feasibility can be found by solving a linearly constrained convex quadratic program or a minimax linear program. The results are illustrated by calculating the radius of robust feasibility of uncertain linear programs for several different uncertainty sets.

Suggested Citation

  • T. D. Chuong & V. Jeyakumar, 2017. "An Exact Formula for Radius of Robust Feasibility of Uncertain Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 203-226, April.
  • Handle: RePEc:spr:joptap:v:173:y:2017:i:1:d:10.1007_s10957-017-1067-6
    DOI: 10.1007/s10957-017-1067-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1067-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1067-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    2. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    3. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2015. "Robust solutions to multi-objective linear programs with uncertain data," European Journal of Operational Research, Elsevier, vol. 242(3), pages 730-743.
    4. Bram L. Gorissen & Hans Blanc & Dick den Hertog & Aharon Ben-Tal, 2014. "Technical Note---Deriving Robust and Globalized Robust Solutions of Uncertain Linear Programs with General Convex Uncertainty Sets," Operations Research, INFORMS, vol. 62(3), pages 672-679, June.
    5. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Woolnough & Niroshan Jeyakumar & Guoyin Li & Clement T Loy & Vaithilingam Jeyakumar, 2022. "Robust Optimization and Data Classification for Characterization of Huntington Disease Onset via Duality Methods," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 649-675, June.
    2. Thai Doan Chuong, 2021. "Radius of Robust Global Error Bound for Piecewise Linear Inequality Systems," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 68-82, October.
    3. Frauke Liers & Lars Schewe & Johannes Thürauf, 2022. "Radius of Robust Feasibility for Mixed-Integer Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 243-261, January.
    4. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    5. Johannes Thürauf, 2022. "Deciding the feasibility of a booking in the European gas market is coNP-hard," Annals of Operations Research, Springer, vol. 318(1), pages 591-618, November.
    6. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    7. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.
    8. M. A. Goberna & V. Jeyakumar & G. Li, 2021. "Calculating Radius of Robust Feasibility of Uncertain Linear Conic Programs via Semi-definite Programs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 597-622, May.
    9. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2022. "The radius of robust feasibility of uncertain mathematical programs: A Survey and recent developments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 749-763.
    10. Vo Si Trong Long, 2024. "On Global Error Bounds for Convex Inequalities Systems," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1359-1384, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Güray Kara & Ayşe Özmen & Gerhard-Wilhelm Weber, 2019. "Stability advances in robust portfolio optimization under parallelepiped uncertainty," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 241-261, March.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    5. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    6. Ben-Tal, A. & den Hertog, D. & De Waegenaere, A.M.B. & Melenberg, B. & Rennen, G., 2011. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Other publications TiSEM 4d43dc51-86d9-4804-8563-9, Tilburg University, School of Economics and Management.
    7. Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.
    8. Han Su & Feifei Dong & Yong Liu & Rui Zou & Huaicheng Guo, 2017. "Robustness-Optimality Tradeoff for Watershed Load Reduction Decision Making under Deep Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3627-3640, September.
    9. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    10. Caprari, Elisa & Cerboni Baiardi, Lorenzo & Molho, Elena, 2019. "Primal worst and dual best in robust vector optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 830-838.
    11. Bazovkin, Pavel & Mosler, Karl, 2011. "Stochastic linear programming with a distortion risk constraint," Discussion Papers in Econometrics and Statistics 6/11, University of Cologne, Institute of Econometrics and Statistics.
    12. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    13. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    14. Frauke Liers & Lars Schewe & Johannes Thürauf, 2022. "Radius of Robust Feasibility for Mixed-Integer Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 243-261, January.
    15. Jornada, Daniel & Leon, V. Jorge, 2016. "Biobjective robust optimization over the efficient set for Pareto set reduction," European Journal of Operational Research, Elsevier, vol. 252(2), pages 573-586.
    16. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    17. Erin K. Doolittle & Hervé L. M. Kerivin & Margaret M. Wiecek, 2018. "Robust multiobjective optimization with application to Internet routing," Annals of Operations Research, Springer, vol. 271(2), pages 487-525, December.
    18. Claire Nicolas & Stéphane Tchung-Ming & Emmanuel Hache, 2016. "Energy transition in transportation under cost uncertainty, an assessment based on robust optimization," Working Papers hal-02475943, HAL.
    19. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    20. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:173:y:2017:i:1:d:10.1007_s10957-017-1067-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.