IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v2y2008i6p81.html
   My bibliography  Save this article

Study on the Duality between MFP and ACP

Author

Listed:
  • Xiaojun Lei
  • Zhian Liang

Abstract

Under the generalized weak convexity of (F, ), we studied the results of several sorts of duality type about the problem of multi-objective fractional programming (MFP), extended this results to the generalized arcwise connected hypothesis, established the optimized problem of arcwise connected area (ACP) and the optimal sufficient condition of  under constraint condition, and gave the duality model, and obtained the conclusions of weak duality and strong duality.

Suggested Citation

  • Xiaojun Lei & Zhian Liang, 2008. "Study on the Duality between MFP and ACP," Modern Applied Science, Canadian Center of Science and Education, vol. 2(6), pages 1-81, November.
  • Handle: RePEc:ibn:masjnl:v:2:y:2008:i:6:p:81
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/2125/1995
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/2125
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siegfried Schaible, 1976. "Fractional Programming. I, Duality," Management Science, INFORMS, vol. 22(8), pages 858-867, April.
    2. Z. A. Liang & H. X. Huang & P. M. Pardalos, 2001. "Optimality Conditions and Duality for a Class of Nonlinear Fractional Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 611-619, September.
    3. Siegfried Schaible, 1976. "Duality in Fractional Programming: A Unified Approach," Operations Research, INFORMS, vol. 24(3), pages 452-461, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    2. C. Singh & M.A. Hanson, 1991. "Multiobjective fractional programming duality theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 925-933, December.
    3. Frauke Liers & Lars Schewe & Johannes Thürauf, 2022. "Radius of Robust Feasibility for Mixed-Integer Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 243-261, January.
    4. T Peña & P Lara & C Castrodeza, 2009. "Multiobjective stochastic programming for feed formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1738-1748, December.
    5. Oleksii Ursulenko & Sergiy Butenko & Oleg Prokopyev, 2013. "A global optimization algorithm for solving the minimum multiple ratio spanning tree problem," Journal of Global Optimization, Springer, vol. 56(3), pages 1029-1043, July.
    6. Altannar Chinchuluun & Dehui Yuan & Panos Pardalos, 2007. "Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity," Annals of Operations Research, Springer, vol. 154(1), pages 133-147, October.
    7. Paula Alexandra Amaral & Immanuel M. Bomze, 2019. "Nonconvex min–max fractional quadratic problems under quadratic constraints: copositive relaxations," Journal of Global Optimization, Springer, vol. 75(2), pages 227-245, October.
    8. I. Ahmad & Z. Husain, 2006. "Optimality Conditions and Duality in Nondifferentiable Minimax Fractional Programming with Generalized Convexity," Journal of Optimization Theory and Applications, Springer, vol. 129(2), pages 255-275, May.
    9. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    10. V. Jeyakumar & G. Y. Li, 2011. "Robust Duality for Fractional Programming Problems with Constraint-Wise Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 292-303, November.
    11. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," ERIM Report Series Research in Management ERS-2004-074-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. D. H. Yuan & X. L. Liu & A. Chinchuluun & P. M. Pardalos, 2006. "Nondifferentiable Minimax Fractional Programming Problems with (C, α, ρ, d)-Convexity," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 185-199, April.
    13. I. Ahmad & Z. Husain & S. Sharma, 2009. "Higher-Order Duality in Nondifferentiable Minimax Programming with Generalized Type I Functions," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 1-12, April.
    14. Jeyakumar, V. & Li, G.Y. & Srisatkunarajah, S., 2013. "Strong duality for robust minimax fractional programming problems," European Journal of Operational Research, Elsevier, vol. 228(2), pages 331-336.
    15. Ahmad, I. & Sharma, Sarita, 2008. "Symmetric duality for multiobjective fractional variational problems involving cones," European Journal of Operational Research, Elsevier, vol. 188(3), pages 695-704, August.
    16. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    17. Hong Yang & Angang Cui, 2023. "The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with ( B K ,ρ )−Invexity," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    18. Arun Kumar Tripathy, 2021. "The Study Higher-order Wolfe-type Non-differentiable Multiple Objective Symmetric Duality Involving Generalized Convex Functions," SN Operations Research Forum, Springer, vol. 2(4), pages 1-18, December.
    19. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," Econometric Institute Research Papers ERS-2004-074-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Castrodeza, Carmen & Lara, Pablo & Pena, Teresa, 2005. "Multicriteria fractional model for feed formulation: economic, nutritional and environmental criteria," Agricultural Systems, Elsevier, vol. 86(1), pages 76-96, October.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:2:y:2008:i:6:p:81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.