IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v2y1998i1d10.1023_a1009739827008.html
   My bibliography  Save this article

Approximation Algorithms for Quadratic Programming

Author

Listed:
  • Minyue Fu

    (The University of Newcastle)

  • Zhi-Quan Luo

    (The University of Newcastle)

  • Yinyu Ye

    (The University of Newcastle)

Abstract

We consider the problem of approximating the global minimum of a general quadratic program (QP) with n variables subject to m ellipsoidal constraints. For m=1, we rigorously show that an ∈-minimizer, where error ∈ ∈ (0, 1), can be obtained in polynomial time, meaning that the number of arithmetic operations is a polynomial in n, m, and log(1/∈). For m ≥ 2, we present a polynomial-time (1- $$\frac{1}{{m^2 }}$$ )-approximation algorithm as well as a semidefinite programming relaxation for this problem. In addition, we present approximation algorithms for solving QP under the box constraints and the assignment polytope constraints.

Suggested Citation

  • Minyue Fu & Zhi-Quan Luo & Yinyu Ye, 1998. "Approximation Algorithms for Quadratic Programming," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 29-50, March.
  • Handle: RePEc:spr:jcomop:v:2:y:1998:i:1:d:10.1023_a:1009739827008
    DOI: 10.1023/A:1009739827008
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1009739827008
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1009739827008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Hongwei & Liu, Sanyang & Lu, Nan, 2015. "A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 973-985.
    2. Nadav Hallak & Marc Teboulle, 2020. "Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 480-503, August.
    3. Sturm, J.F. & Zhang, S., 2001. "On Cones of Nonnegative Quadratic Functions," Other publications TiSEM 075a6b4d-5b51-4153-a9c3-0, Tilburg University, School of Economics and Management.
    4. Samuel Burer & Kyungchan Park, 2024. "A Strengthened SDP Relaxation for Quadratic Optimization Over the Stiefel Manifold," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 320-339, July.
    5. Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
    6. Zhuoyi Xu & Linbin Li & Yong Xia, 2023. "A partial ellipsoidal approximation scheme for nonconvex homogeneous quadratic optimization with quadratic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 93-109, August.
    7. Xiaoli Cen & Yong Xia, 2021. "A New Global Optimization Scheme for Quadratic Programs with Low-Rank Nonconvexity," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1368-1383, October.
    8. Alexandre Belloni & Robert M. Freund & Santosh Vempala, 2009. "An Efficient Rescaled Perceptron Algorithm for Conic Systems," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 621-641, August.
    9. Zhuoyi Xu & Yong Xia & Jiulin Wang, 2021. "Cheaper relaxation and better approximation for multi-ball constrained quadratic optimization and extension," Journal of Global Optimization, Springer, vol. 80(2), pages 341-356, June.
    10. Kurt M. Anstreicher, 2024. "Solving Two-Trust-Region Subproblems Using Semidefinite Optimization with Eigenvector Branching," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 303-319, July.
    11. D. Henrion & S. Tarbouriech & D. Arzelier, 2001. "LMI Approximations for the Radius of the Intersection of Ellipsoids: Survey," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 1-28, January.
    12. Tongli Zhang & Yong Xia, 2022. "Comment on “Approximation algorithms for quadratic programming”," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1099-1103, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:2:y:1998:i:1:d:10.1023_a:1009739827008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.