IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i2p629-642.html
   My bibliography  Save this article

A New Scatter Search Design for Multiobjective Combinatorial Optimization with an Application to Facility Location

Author

Listed:
  • A. D. López-Sánchez

    (Pablo de Olavide University, 41013 Sevilla, Spain)

  • J. Sánchez-Oro

    (Rey Juan Carlos University, 28933 Madrid, Spain)

  • M. Laguna

    (Leeds School of Business, University of Colorado, Boulder, Colorado 80309)

Abstract

Scatter search (SS) is a well-established metaheuristic solution methodology that has seen most of its success in single-objective optimization. The literature includes a few examples of the SS methodology adapted to multiobjective optimization, almost all dealing with continuous, nonlinear problems. We describe an SS design that we believe has general applicability in the area of multiobjective combinatorial optimization and show its effectiveness by applying it to a facility location problem. Facility location consists of identifying the best locations for a set of facilities. The set of best locations may vary substantially according to the objective function employed to solve the optimization problem. We employ a facility location problem with multiple objectives (mo-FLP) to test our design ideas for a multiobjective optimization scatter search. We focus on the objective functions associated with three well-known location problems in the literature: the p -Median Problem (pMP), the Maximal Coverage Location Problem (MCLP), and the p -Center Problem (pCP). Our computational experiments are configured to show that the proposed SS design is capable of producing high-quality Pareto-front approximations. Summary of Contribution: Metaheuristic optimization is at the heart of the intersection between computer science and operations research. The INFORMS Journal on Computing has been fundamental in advancing the ideas behind metaheuristic methodologies. Fred Glover's Tabu Search–Part I was published more than 30 years ago in the first volume of the then ORSA Journal on Computing . This article, one of the most cited in the area of heuristic optimization, paved the way for many contributions to the methodology and practice of operations research. As a continuation of this stream of research, we describe a new scatter search design for multiobjective optimization. The design includes a short-term memory tabu search and a path relinking combination method. We show how the strategies and mechanisms within scatter search and tabu search can be combined to produce a highly effective approach to multiobjective optimization.

Suggested Citation

  • A. D. López-Sánchez & J. Sánchez-Oro & M. Laguna, 2021. "A New Scatter Search Design for Multiobjective Combinatorial Optimization with an Application to Facility Location," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 629-642, May.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:2:p:629-642
    DOI: 10.1287/ijoc.2020.0966
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.0966
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.0966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian Molina & Manuel Laguna & Rafael Martí & Rafael Caballero, 2007. "SSPMO: A Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 91-100, February.
    2. Manuel Laguna & Thomas A. Feo & Hal C. Elrod, 1994. "A Greedy Randomized Adaptive Search Procedure for the Two-Partition Problem," Operations Research, INFORMS, vol. 42(4), pages 677-687, August.
    3. R Caballero & M Laguna & R Martí & J Molina, 2011. "Scatter tabu search for multiobjective clustering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2034-2046, November.
    4. R Caballero & M Laguna & R Martí & J Molina, 2011. "Scatter tabu search for multiobjective clustering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2034-2046, November.
    5. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    6. Rafael Martí & Abraham Duarte & Manuel Laguna, 2009. "Advanced Scatter Search for the Max-Cut Problem," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 26-38, February.
    7. L’udmila Jánošíková & Miloš Herda & Michal Haviar, 2017. "Hybrid genetic algorithms with selective crossover for the capacitated p-median problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 651-664, September.
    8. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    9. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    10. Fred Glover, 1990. "Tabu Search—Part II," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 4-32, February.
    11. Vicente Campos & Manuel Laguna & Rafael Martí, 2005. "Context-Independent Scatter and Tabu Search for Permutation Problems," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 111-122, February.
    12. Marti, Rafael & Laguna, Manuel & Glover, Fred, 2006. "Principles of scatter search," European Journal of Operational Research, Elsevier, vol. 169(2), pages 359-372, March.
    13. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    14. Thomas A. Feo & Mauricio G. C. Resende & Stuart H. Smith, 1994. "A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set," Operations Research, INFORMS, vol. 42(5), pages 860-878, October.
    15. Xiwang Guo & Shixin Liu, 2014. "A Scatter Search Approach for Multiobjective Selective Disassembly Sequence Problem," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-9, November.
    16. Beausoleil, Ricardo P., 2006. ""MOSS" multiobjective scatter search applied to non-linear multiple criteria optimization," European Journal of Operational Research, Elsevier, vol. 169(2), pages 426-449, March.
    17. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Wenxuan Shan & Qianqian Yan & Chao Chen & Mengjie Zhang & Baozhen Yao & Xuemei Fu, 2019. "Optimization of competitive facility location for chain stores," Annals of Operations Research, Springer, vol. 273(1), pages 187-205, February.
    3. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    4. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    5. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    6. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    7. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    8. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    9. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    10. Chris S. K. Leung & Henry Y. K. Lau, 2018. "Multiobjective Simulation-Based Optimization Based on Artificial Immune Systems for a Distribution Center," Journal of Optimization, Hindawi, vol. 2018, pages 1-15, May.
    11. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    12. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    13. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    14. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    15. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    16. Daniel O’Malley & Velimir V Vesselinov & Boian S Alexandrov & Ludmil B Alexandrov, 2018. "Nonnegative/Binary matrix factorization with a D-Wave quantum annealer," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
    17. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    18. C-H Lan & C-C Chen, 2007. "Optimal purchase of two-itemized drugs for a disease," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 309-316, March.
    19. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    20. Sadan Kulturel-Konak & Bryan A. Norman & David W. Coit & Alice E. Smith, 2004. "Exploiting Tabu Search Memory in Constrained Problems," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 241-254, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:2:p:629-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.