IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws121913.html
   My bibliography  Save this paper

A p-median problem with distance selection

Author

Listed:
  • Benati, Stefano
  • García, Sergio

Abstract

This paper introduces an extension of the p-median problem and its application to clustering, in which the distance/dissimilarity function between units is calculated as the distance sum on the q most important variables. These variables are to be chosen from a set of m elements, so a new combinatorial feature has been added to the problem, that we call the p-median model with distance selection. This problem has its origin in cluster analysis, often applied to sociological surveys, where it is common practice for a researcher to select the q statistical variables they predict will be the most important in discriminating the statistical units before applying the clustering algorithm. Here we show how this selection can be formulated as a non-linear mixed integer optimization mode and we show how this model can be linearized in several different ways. These linearizations are compared in a computational study and the results outline that the radius formulation of the p-median is the most efficient model for solving this problem.

Suggested Citation

  • Benati, Stefano & García, Sergio, 2012. "A p-median problem with distance selection," DES - Working Papers. Statistics and Econometrics. WS ws121913, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws121913
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/15b176e2-4731-41d3-8048-1cfc5c6a52c1/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John M. Mulvey & Harlan P. Crowder, 1979. "Cluster Analysis: An Application of Lagrangian Relaxation," Management Science, INFORMS, vol. 25(4), pages 329-340, April.
    2. Sourour Elloumi, 2010. "A tighter formulation of the p-median problem," Journal of Combinatorial Optimization, Springer, vol. 19(1), pages 69-83, January.
    3. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    4. Sourour Elloumi & Martine Labbé & Yves Pochet, 2004. "A New Formulation and Resolution Method for the p-Center Problem," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 84-94, February.
    5. T. D. Klastorin, 1985. "The p-Median Problem for Cluster Analysis: A Comparative Test Using the Mixture Model Approach," Management Science, INFORMS, vol. 31(1), pages 84-95, January.
    6. Stefano Benati & Silvana Stefani, 2011. "The Academic Journal Ranking Problem: A Fuzzy-Clustering Approach," Journal of Classification, Springer;The Classification Society, vol. 28(1), pages 7-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    2. Duran-Mateluna, Cristian & Ales, Zacharie & Elloumi, Sourour, 2023. "An efficient benders decomposition for the p-median problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 84-96.
    3. Sergio García & Martine Labbé & Alfredo Marín, 2011. "Solving Large p -Median Problems with a Radius Formulation," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 546-556, November.
    4. Antiopi Panteli & Basilis Boutsinas & Ioannis Giannikos, 2021. "On solving the multiple p-median problem based on biclustering," Operational Research, Springer, vol. 21(1), pages 775-799, March.
    5. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Michael Brusco & Hans-Friedrich Köhn, 2009. "Exemplar-Based Clustering via Simulated Annealing," Psychometrika, Springer;The Psychometric Society, vol. 74(3), pages 457-475, September.
    7. Vakharia, Asoo J. & Mahajan, Jayashree, 2000. "Clustering of objects and attributes for manufacturing and marketing applications," European Journal of Operational Research, Elsevier, vol. 123(3), pages 640-651, June.
    8. Enrique Domínguez & Alfredo Marín, 2020. "Discrete ordered median problem with induced order," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 793-813, October.
    9. Jesus Garcia-Diaz & Jairo Sanchez-Hernandez & Ricardo Menchaca-Mendez & Rolando Menchaca-Mendez, 2017. "When a worse approximation factor gives better performance: a 3-approximation algorithm for the vertex k-center problem," Journal of Heuristics, Springer, vol. 23(5), pages 349-366, October.
    10. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    11. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
    12. Chandra Ade Irawan & Said Salhi & Zvi Drezner, 2016. "Hybrid meta-heuristics with VNS and exact methods: application to large unconditional and conditional vertex $$p$$ p -centre problems," Journal of Heuristics, Springer, vol. 22(4), pages 507-537, August.
    13. Raphael Kramer & Manuel Iori & Thibaut Vidal, 2020. "Mathematical Models and Search Algorithms for the Capacitated p -Center Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 444-460, April.
    14. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F., 2012. "Design and analysis of hybrid metaheuristics for the Reliability p-Median Problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 54-64.
    15. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    16. F. Antonio Medrano, 2020. "The complete vertex p-center problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 327-343, October.
    17. Alfandari, Laurent, 2004. "Choice Rules with Size Constraints for Multiple Criteria Decision Making," ESSEC Working Papers DR 04002, ESSEC Research Center, ESSEC Business School.
    18. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    19. M Horn, 1996. "Analysis and Computational Schemes for p-Median Heuristics," Environment and Planning A, , vol. 28(9), pages 1699-1708, September.
    20. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.

    More about this item

    Keywords

    p-median problem;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws121913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.