IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v186y2008i1p91-103.html
   My bibliography  Save this article

Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem

Author

Listed:
  • Kaparis, Konstantinos
  • Letchford, Adam N.

Abstract

No abstract is available for this item.

Suggested Citation

  • Kaparis, Konstantinos & Letchford, Adam N., 2008. "Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 91-103, April.
  • Handle: RePEc:eee:ejores:v:186:y:2008:i:1:p:91-103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00175-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eitan Zemel, 1989. "Easily Computable Facets of the Knapsack Polytope," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 760-764, November.
    2. Zonghao Gu & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Sequence Independent Lifting in Mixed Integer Programming," Journal of Combinatorial Optimization, Springer, vol. 4(1), pages 109-129, March.
    3. WOLSEY, Laurence A., 1976. "Facets and strong valid inequalities for integer programs," LIDAM Reprints CORE 246, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Alper Atamtürk, 2005. "Cover and Pack Inequalities for (Mixed) Integer Programming," Annals of Operations Research, Springer, vol. 139(1), pages 21-38, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Büsing & Sebastian Goderbauer & Arie M. C. A. Koster & Manuel Kutschka, 2019. "Formulations and algorithms for the recoverable $${\varGamma }$$ Γ -robust knapsack problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 15-45, March.
    2. Agostinho Agra & Cristina Requejo & Eulália Santos, 2016. "Implicit cover inequalities," Journal of Combinatorial Optimization, Springer, vol. 31(3), pages 1111-1129, April.
    3. Raphael Kramer & Manuel Iori & Thibaut Vidal, 2020. "Mathematical Models and Search Algorithms for the Capacitated p -Center Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 444-460, April.
    4. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    5. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    6. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    7. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.
    8. Said Dabia & Stefan Ropke & Tom van Woensel, 2019. "Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts," Transportation Science, INFORMS, vol. 53(5), pages 1354-1371, September.
    9. Said Dabia & David Lai & Daniele Vigo, 2019. "An Exact Algorithm for a Rich Vehicle Routing Problem with Private Fleet and Common Carrier," Transportation Science, INFORMS, vol. 53(4), pages 986-1000, July.
    10. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    11. Santanu S. Dey & Jean-Philippe Richard, 2009. "Linear-Programming-Based Lifting and Its Application to Primal Cutting-Plane Algorithms," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 137-150, February.
    12. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyi Gu & Santanu S. Dey & Jean-Philippe P. Richard, 2024. "Solving Sparse Separable Bilinear Programs Using Lifted Bilinear Cover Inequalities," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 884-899, May.
    2. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.
    3. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    4. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    5. Alper Atamtürk, 2004. "Sequence Independent Lifting for Mixed-Integer Programming," Operations Research, INFORMS, vol. 52(3), pages 487-490, June.
    6. Agostinho Agra & Cristina Requejo & Eulália Santos, 2016. "Implicit cover inequalities," Journal of Combinatorial Optimization, Springer, vol. 31(3), pages 1111-1129, April.
    7. Amar K. Narisetty & Jean-Philippe P. Richard & George L. Nemhauser, 2011. "Lifted Tableaux Inequalities for 0--1 Mixed-Integer Programs: A Computational Study," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 416-424, August.
    8. Alper Atamtürk, 2005. "Cover and Pack Inequalities for (Mixed) Integer Programming," Annals of Operations Research, Springer, vol. 139(1), pages 21-38, October.
    9. Wei-Kun Chen & Liang Chen & Yu-Hong Dai, 2023. "Lifting for the integer knapsack cover polyhedron," Journal of Global Optimization, Springer, vol. 86(1), pages 205-249, May.
    10. Santanu S. Dey & Jean-Philippe Richard, 2009. "Linear-Programming-Based Lifting and Its Application to Primal Cutting-Plane Algorithms," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 137-150, February.
    11. Pasquale Avella & Maurizio Boccia & Igor Vasilyev, 2012. "Computational Testing of a Separation Procedure for the Knapsack Set with a Single Continuous Variable," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 165-171, February.
    12. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt6zz2g0z4, University of California Transportation Center.
    13. Alper Atamtürk & Laurent Flindt Muller & David Pisinger, 2013. "Separation and Extension of Cover Inequalities for Conic Quadratic Knapsack Constraints with Generalized Upper Bounds," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 420-431, August.
    14. Michele Conforti & Gérard Cornuéjols & Giacomo Zambelli, 2011. "A Geometric Perspective on Lifting," Operations Research, INFORMS, vol. 59(3), pages 569-577, June.
    15. Quentin Louveaux & Laurence Wolsey, 2007. "Lifting, superadditivity, mixed integer rounding and single node flow sets revisited," Annals of Operations Research, Springer, vol. 153(1), pages 47-77, September.
    16. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
    17. Ahmet B. Keha & Ismael R. de Farias & George L. Nemhauser, 2006. "A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization," Operations Research, INFORMS, vol. 54(5), pages 847-858, October.
    18. E. K. Lee, 1997. "On Facets of Knapsack Equality Polytopes," Journal of Optimization Theory and Applications, Springer, vol. 94(1), pages 223-239, July.
    19. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1999. "Lifted Cover Inequalities for 0-1 Integer Programs: Complexity," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 117-123, February.
    20. Dimitri J. Papageorgiou & Alejandro Toriello & George L. Nemhauser & Martin W. P. Savelsbergh, 2012. "Fixed-Charge Transportation with Product Blending," Transportation Science, INFORMS, vol. 46(2), pages 281-295, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:186:y:2008:i:1:p:91-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.