IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v31y2019i3p493-514.html
   My bibliography  Save this article

Integrated Scheduling of Production and Two-Stage Delivery of Make-to-Order Products: Offline and Online Algorithms

Author

Listed:
  • Lixin Tang

    (Liaoning Engineering Laboratory of Operations Analytics and Optimization for Smart Industry, Institute of Industrial and Systems Engineering, Northeastern University, Shenyang 110819, China;)

  • Feng Li

    (School of Management, Huazhong University of Science & Technology, Wuhan 430074, China;)

  • Zhi-Long Chen

    (Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742)

Abstract

We study integrated production- and delivery-scheduling problems that arise in practical make-to-order settings in several industries. In these problems, make-to-order products are first processed in a plant and then delivered to customer sites through two stages of shipping: first, from the plant to a pool point (e.g., a port, a distribution, or a consolidation center) and, second, from the pool point to customer sites. The objective is to obtain a joint schedule of job processing at the plant and two-stage shipping of completed jobs to customer sites to optimize a performance measure that takes into account both delivery timeliness and total transportation costs. We consider two problems in which delivery timeliness is measured by total or maximum lead time of the jobs and study both offline and online versions of these problems. For the offline problems involving a single production line at the plant, we provide optimal dynamic programming algorithms. For the more general offline problems involving multiple production lines at the plant, we propose fast heuristics and analyze their worst-case and asymptotic performances. For the online problems, we propose online algorithms and analyze their competitive ratios. By comparing our offline heuristics with lower bounds using randomly generated test instances, it is shown that these heuristics are capable of generating near-optimal solutions quickly. Using real data from Baosteel’s Meishan plant, we also show that our corresponding offline heuristic generates significantly better solutions than Baosteel’s rule-based approach. In addition, our computational results on the performance of the online algorithms relative to the offline heuristics generate important methodological insights that can be used by practitioners in choosing a specific solution approach.

Suggested Citation

  • Lixin Tang & Feng Li & Zhi-Long Chen, 2019. "Integrated Scheduling of Production and Two-Stage Delivery of Make-to-Order Products: Offline and Online Algorithms," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 493-514, July.
  • Handle: RePEc:inm:orijoc:v:31:y:2019:i:3:p:493-514
    DOI: 10.1287/ijoc.2018.0842
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0842
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhi-Long Chen & George L. Vairaktarakis, 2005. "Integrated Scheduling of Production and Distribution Operations," Management Science, INFORMS, vol. 51(4), pages 614-628, April.
    2. Liu, Ming & Chu, Chengbin & Xu, Yinfeng & Zheng, Feifeng, 2010. "An optimal online algorithm for single machine scheduling with bounded delivery times," European Journal of Operational Research, Elsevier, vol. 201(3), pages 693-700, March.
    3. Kathryn E. Stecke & Xuying Zhao, 2007. "Production and Transportation Integration for a Make-to-Order Manufacturing Company with a Commit-to-Delivery Business Mode," Manufacturing & Service Operations Management, INFORMS, vol. 9(2), pages 206-224, September.
    4. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    5. Zhi-Long Chen & Guruprasad Pundoor, 2006. "Order Assignment and Scheduling in a Supply Chain," Operations Research, INFORMS, vol. 54(3), pages 555-572, June.
    6. Xin Feng & Yongxi Cheng & Feifeng Zheng & Yinfeng Xu, 2016. "Online integrated production–distribution scheduling problems without preemption," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1569-1585, May.
    7. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    8. James Blocher & Dilip Chhajed, 2008. "Minimizing customer order lead-time in a two-stage assembly supply chain," Annals of Operations Research, Springer, vol. 161(1), pages 25-52, July.
    9. George Dikos & Stavroula Spyropoulou, 2013. "Supply Chain Optimization and Planning in Heracles General Cement Company," Interfaces, INFORMS, vol. 43(4), pages 297-312, August.
    10. Li, Chung-Lun & Vairaktarakis, George & Lee, Chung-Yee, 2005. "Machine scheduling with deliveries to multiple customer locations," European Journal of Operational Research, Elsevier, vol. 164(1), pages 39-51, July.
    11. Haiqing Song & Vernon N. Hsu & Raymond K. Cheung, 2008. "Distribution Coordination Between Suppliers and Customers with a Consolidation Center," Operations Research, INFORMS, vol. 56(5), pages 1264-1277, October.
    12. Valerie Tardif & Sridhar Tayur & James Reardon & Reid Stines & Pete Zimmerman, 2010. "OR Practice---Implementing Seasonal Logistics Tactics for Finished Goods Distribution at Deere & Company's C&CE Division," Operations Research, INFORMS, vol. 58(1), pages 1-15, February.
    13. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    14. Lixin Tang & Ying Meng & Zhi-Long Chen & Jiyin Liu, 2016. "Coil Batching to Improve Productivity and Energy Utilization in Steel Production," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 262-279, May.
    15. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    16. Sıla Çetinkaya & Halit Üster & Gopalakrishnan Easwaran & Burcu Baris Keskin, 2009. "An Integrated Outbound Logistics Model for Frito-Lay: Coordinating Aggregate-Level Production and Distribution Decisions," Interfaces, INFORMS, vol. 39(5), pages 460-475, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Li & Jinjiang Yuan, 2021. "Single-machine online scheduling of jobs with non-delayed processing constraint," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 830-843, May.
    2. Li, Feng & Xu, Shifu & Xu, Zhou, 2023. "New exact and approximation algorithms for integrated production and transportation scheduling with committed delivery due dates and order acceptance," European Journal of Operational Research, Elsevier, vol. 306(1), pages 127-140.
    3. Wang, Julong & Liu, Zhixue & Li, Feng, 2024. "Integrated production and transportation scheduling problem under nonlinear cost structures," European Journal of Operational Research, Elsevier, vol. 313(3), pages 883-904.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Li & Zhou Xu & Zhi-Long Chen, 2020. "Production and Transportation Integration for Commit-to-Delivery Mode with General Shipping Costs," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1012-1029, October.
    2. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    3. Azeddine Cheref & Alessandro Agnetis & Christian Artigues & Jean-Charles Billaut, 2017. "Complexity results for an integrated single machine scheduling and outbound delivery problem with fixed sequence," Journal of Scheduling, Springer, vol. 20(6), pages 681-693, December.
    4. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    5. Zhong, Xueling & Fan, Jie & Ou, Jinwen, 2022. "Coordinated scheduling of the outsourcing, in-house production and distribution operations," European Journal of Operational Research, Elsevier, vol. 302(2), pages 427-437.
    6. Lixin Tang & Feng Li & Jiyin Liu, 2015. "Integrated scheduling of loading and transportation with tractors and semitrailers separated," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(5), pages 416-433, August.
    7. Gao, Su & Qi, Lian & Lei, Lei, 2015. "Integrated batch production and distribution scheduling with limited vehicle capacity," International Journal of Production Economics, Elsevier, vol. 160(C), pages 13-25.
    8. S. Mohammadi & S. Al-E-Hashem & Yacine Rekik, 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company," Post-Print hal-02194222, HAL.
    9. Mohammadi, S. & Al-e-Hashem, S.M.J. Mirzapour & Rekik, Y., 2020. "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company," International Journal of Production Economics, Elsevier, vol. 219(C), pages 347-359.
    10. Feng Guo & Qi Liu & Dunhu Liu & Zhaoxia Guo, 2017. "On Production and Green Transportation Coordination in a Sustainable Global Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    11. Cheng, Ba-Yi & Leung, Joseph Y-T. & Li, Kai, 2017. "Integrated scheduling on a batch machine to minimize production, inventory and distribution costs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 104-112.
    12. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    13. B.‐Y. Cheng & J.Y.‐T. Leung & K. Li & S.‐L. Yang, 2015. "Single batch machine scheduling with deliveries," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 470-482, September.
    14. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    15. Zeynep Ceylan & Hakan Tozan & Serol Bulkan, 2021. "A coordinated scheduling problem for the supply chain in a flexible job shop machine environment," Operational Research, Springer, vol. 21(2), pages 875-900, June.
    16. Daniel Schubert & André Scholz & Gerhard Wäscher, 2018. "Integrated order picking and vehicle routing with due dates," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1109-1139, October.
    17. Li, Chung-Lun & Li, Feng, 2020. "Rescheduling production and outbound deliveries when transportation service is disrupted," European Journal of Operational Research, Elsevier, vol. 286(1), pages 138-148.
    18. Sun, X.T. & Chung, S.H. & Chan, Felix T.S., 2015. "Integrated scheduling of a multi-product multi-factory manufacturing system with maritime transport limits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 110-127.
    19. Benjamin C. Shelbourne & Maria Battarra & Chris N. Potts, 2017. "The Vehicle Routing Problem with Release and Due Dates," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 705-723, November.
    20. Nicholas G. Hall & Zhixin Liu, 2010. "Capacity Allocation and Scheduling in Supply Chains," Operations Research, INFORMS, vol. 58(6), pages 1711-1725, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:31:y:2019:i:3:p:493-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.