IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i1p156-167.html
   My bibliography  Save this article

The stochastic inventory routing problem on electric roads

Author

Listed:
  • Gutierrez-Alcoba, Alejandro
  • Rossi, Roberto
  • Martin-Barragan, Belen
  • Embley, Tim

Abstract

In this work we introduce a green inventory routing problem termed the Stochastic Inventory Routing Problem on Electric Roads (S-IRP-ER), in which a hybrid vehicle navigates a road network with charging opportunities in some road sections, to cover the non-stationary stochastic demand of a single product for a set of retailers in the network. We model the problem using isochrone graphs to represent the real road network. In an isochrone graph nodes are located such that the time to travel any arc is constant all over the network. This allows for tracking the battery level of the vehicle serving retailers, as it charges and discharges continuously while travelling. We formulate a mathematical programming heuristics and prove its effectiveness. We use our model on a realistic instance of the problem, showcasing the different strategies that a vehicle may follow depending on fuel costs in relation to the costs of electricity.

Suggested Citation

  • Gutierrez-Alcoba, Alejandro & Rossi, Roberto & Martin-Barragan, Belen & Embley, Tim, 2023. "The stochastic inventory routing problem on electric roads," European Journal of Operational Research, Elsevier, vol. 310(1), pages 156-167.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:1:p:156-167
    DOI: 10.1016/j.ejor.2023.02.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723001601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.02.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    3. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    5. Gaetan Belvaux & Laurence A. Wolsey, 2001. "Modelling Practical Lot-Sizing Problems as Mixed-Integer Programs," Management Science, INFORMS, vol. 47(7), pages 993-1007, July.
    6. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    7. BELVAUX, Gaetan & WOLSEY, Laurence A., 2001. "Modelling practical lot-sizing problems as mixed-integer programs," LIDAM Reprints CORE 1516, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Huseyin Tunc & Onur A. Kilic & S. Armagan Tarim & Roberto Rossi, 2018. "An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 492-506, August.
    9. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    10. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    11. Rossi, Roberto & Tomasella, Maurizio & Martin-Barragan, Belen & Embley, Tim & Walsh, Christopher & Langston, Matthew, 2019. "The Dynamic Bowser Routing Problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 108-126.
    12. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najafi, Arsalan & Tsaousoglou, Georgios & Gao, Kun & Parishwad, Omkar, 2024. "Coordination of coupled electrified road systems and active power distribution networks with flexibility integration," Applied Energy, Elsevier, vol. 369(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    2. Roberti, R. & Wen, M., 2016. "The Electric Traveling Salesman Problem with Time Windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 32-52.
    3. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    4. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    5. Kuby, Michael & Capar, Ismail & Kim, Jong-Geun, 2017. "Efficient and equitable transnational infrastructure planning for natural gas trucking in the European Union," European Journal of Operational Research, Elsevier, vol. 257(3), pages 979-991.
    6. Singh, Nitish & Dang, Quang-Vinh & Akcay, Alp & Adan, Ivo & Martagan, Tugce, 2022. "A matheuristic for AGV scheduling with battery constraints," European Journal of Operational Research, Elsevier, vol. 298(3), pages 855-873.
    7. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    8. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    9. Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
    10. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    11. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    12. Markov, Iliya & Varone, Sacha & Bierlaire, Michel, 2016. "Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 256-273.
    13. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    14. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    15. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    16. Tang, Mengcheng & Zhuang, Weichao & Li, Bingbing & Liu, Haoji & Song, Ziyou & Yin, Guodong, 2023. "Energy-optimal routing for electric vehicles using deep reinforcement learning with transformer," Applied Energy, Elsevier, vol. 350(C).
    17. Ma, Tai-Yu & Fang, Yumeng & Connors, Richard D. & Viti, Francesco & Nakao, Haruko, 2024. "A hybrid metaheuristic to optimize electric first-mile feeder services with charging synchronization constraints and customer rejections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    18. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    19. Bongiovanni, Claudia & Kaspi, Mor & Geroliminis, Nikolas, 2019. "The electric autonomous dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 436-456.
    20. Su, Yue & Dupin, Nicolas & Puchinger, Jakob, 2023. "A deterministic annealing local search for the electric autonomous dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1091-1111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:1:p:156-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.