IDEAS home Printed from https://ideas.repec.org/a/igg/jdwm00/v20y2024i1p1-14.html
   My bibliography  Save this article

Multichannel Adaptive Data Mixture Augmentation for Graph Neural Networks

Author

Listed:
  • Zhonglin Ye

    (Qinghai Normal University, China)

  • Lin Zhou

    (Qinghai Normal University, China)

  • Mingyuan Li

    (Qinghai Normal University, China)

  • Wei Zhang

    (Qinghai Normal University, China)

  • Zhen Liu

    (Nagasaki Institute of Applied Science, Japan)

  • Haixing Zhao

    (Qinghai Normal University, China)

Abstract

Graph neural networks (GNNs) have demonstrated significant potential in analyzing complex graph-structured data. However, conventional GNNs encounter challenges in effectively incorporating global and local features. Therefore, this paper introduces a novel approach for GNN called multichannel adaptive data mixture augmentation (MAME-GNN). It enhances a GNN by adopting a multi-channel architecture and interactive learning to effectively capture and coordinate the interrelationships between local and global graph structures. Additionally, this paper introduces the polynomial–Gaussian mixture graph interpolation method to address the problem of single and sparse graph data, which generates diverse and nonlinear transformed samples, improving the model's generalization ability. The proposed MAME-GNN is validated through extensive experiments on publicly available datasets, showcasing its effectiveness. Compared to existing GNN models, the MAME-GNN exhibits superior performance, significantly enhancing the model's robustness and generalization ability.

Suggested Citation

  • Zhonglin Ye & Lin Zhou & Mingyuan Li & Wei Zhang & Zhen Liu & Haixing Zhao, 2024. "Multichannel Adaptive Data Mixture Augmentation for Graph Neural Networks," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 20(1), pages 1-14, January.
  • Handle: RePEc:igg:jdwm00:v:20:y:2024:i:1:p:1-14
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.349975
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    2. Lulu Song & Ying Meng & Qingxin Guo & Xinchang Gong, 2023. "Improved Differential Evolution Algorithm for Slab Allocation and Hot-Rolling Scheduling Integration Problem," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    3. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    4. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    5. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    7. Milan Vaclavik & Josef Jablonsky, 2012. "Revisions of modern portfolio theory optimization model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 473-483, September.
    8. Sabastine Mushori & Delson Chikobvu, 2016. "A Stochastic Multi-stage Trading Cost model in optimal portfolio selection," EERI Research Paper Series EERI RP 2016/23, Economics and Econometrics Research Institute (EERI), Brussels.
    9. Walter Murray & Howard Shek, 2012. "A local relaxation method for the cardinality constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 53(3), pages 681-709, December.
    10. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    11. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    12. Takashi Hasuike & Mukesh Kumar Mehlawat, 2018. "Investor-friendly and robust portfolio selection model integrating forecasts for financial tendency and risk-averse," Annals of Operations Research, Springer, vol. 269(1), pages 205-221, October.
    13. Jyotirmayee Behera & Pankaj Kumar, 2024. "Implementation of machine learning in $$\ell _{\infty }$$ ℓ ∞ -based sparse Sharpe ratio portfolio optimization: a case study on Indian stock market," Operational Research, Springer, vol. 24(4), pages 1-26, December.
    14. Powell, John G. & Premachandra, I.M., 1998. "Accommodating diverse institutional investment objectives and constraints using non-linear goal programming," European Journal of Operational Research, Elsevier, vol. 105(3), pages 447-456, March.
    15. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    16. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    17. Vanvuchelen, Nathalie & De Boeck, Kim & Boute, Robert N., 2024. "Cluster-based lateral transshipments for the Zambian health supply chain," European Journal of Operational Research, Elsevier, vol. 313(1), pages 373-386.
    18. Mila Bravo & Dylan Jones & David Pla-Santamaria & Francisco Salas-Molina, 2022. "Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection," Operational Research, Springer, vol. 22(5), pages 5685-5706, November.
    19. Thierry Chauveau & Sylvain Friederich & Jérôme Héricourt & Emmanuel Jurczenko & Catherine Lubochinsky & Bertrand Maillet & Christophe Moussu & Bogdan Négréa & Hélène Raymond-Feingold, 2004. "La volatilité des marchés augmente-t-elle ?," Revue d'Économie Financière, Programme National Persée, vol. 74(1), pages 17-44.
    20. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:20:y:2024:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.