IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.02987.html
   My bibliography  Save this paper

Portfolio selection models based on interval-valued conditional value at risk (ICVaR) and empirical analysis

Author

Listed:
  • Jinping Zhang
  • Keming Zhang

Abstract

Risk management is very important for individual investors or companies. There are many ways to measure the risk of investment. Prices of risky assets vary rapidly and randomly due to the complexity of finance market. Random interval is a good tool to describe uncertainty with both randomness and imprecision. Considering the uncertainty of financial market, we employ random intervals to describe the returns of a risk asset and consider the tail risk, which is called the interval-valued Conditional Value at Risk (ICVaR, for short). Such an ICVaR is a risk measure and satisfies subadditivity. Under the new risk measure ICVaR, as a manner similar to the classical portfolio model of Markowitz, optimal interval-valued portfolio selection models are built. Based on the real data from mainland Chinese stock market, the case study shows that our models are interpretable and consistent with the practical scenarios.

Suggested Citation

  • Jinping Zhang & Keming Zhang, 2022. "Portfolio selection models based on interval-valued conditional value at risk (ICVaR) and empirical analysis," Papers 2201.02987, arXiv.org, revised Jul 2022.
  • Handle: RePEc:arx:papers:2201.02987
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.02987
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
    2. Costello, Alexandra & Asem, Ebenezer & Gardner, Eldon, 2008. "Comparison of historically simulated VaR: Evidence from oil prices," Energy Economics, Elsevier, vol. 30(5), pages 2154-2166, September.
    3. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    4. Andreas H. Hamel & Birgit Rudloff & Mihaela Yankova, 2012. "Set-valued average value at risk and its computation," Papers 1202.5702, arXiv.org, revised Jan 2013.
    5. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    6. Mansini, Renata & Speranza, Maria Grazia, 1999. "Heuristic algorithms for the portfolio selection problem with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 114(2), pages 219-233, April.
    7. Castellacci, Giuseppe & Siclari, Michael J., 2003. "The practice of Delta-Gamma VaR: Implementing the quadratic portfolio model," European Journal of Operational Research, Elsevier, vol. 150(3), pages 529-545, November.
    8. Hiai, Fumio & Umegaki, Hisaharu, 1977. "Integrals, conditional expectations, and martingales of multivalued functions," Journal of Multivariate Analysis, Elsevier, vol. 7(1), pages 149-182, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    2. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
    3. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    4. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    5. Carla Oliveira Henriques & Dulce Helena Coelho & Maria Elisabete Duarte Neves, 2022. "Investment planning in energy efficiency programs: a portfolio based approach," Operational Research, Springer, vol. 22(1), pages 615-649, March.
    6. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    7. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    8. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
    9. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    10. Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
    11. C Papahristodoulou & E Dotzauer, 2004. "Optimal portfolios using linear programming models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1169-1177, November.
    12. Davide Lauria & W. Brent Lindquist & Stefan Mittnik & Svetlozar T. Rachev, 2022. "ESG-Valued Portfolio Optimization and Dynamic Asset Pricing," Papers 2206.02854, arXiv.org.
    13. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    14. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
    15. Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
    16. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    17. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    18. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    19. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    20. Barbara Glensk & Reinhard Madlener, 2018. "Fuzzy Portfolio Optimization of Power Generation Assets," Energies, MDPI, vol. 11(11), pages 1-22, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.02987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.