IDEAS home Printed from https://ideas.repec.org/a/ids/ijgeni/v39y2016i3-4p253-270.html
   My bibliography  Save this article

Analysis of fuel efficiency of largest European airlines in the context of climate change mitigation

Author

Listed:
  • Ticiano Costa Jordão

Abstract

In recent years Greenhouse Gas (GHG) emissions released by aircraft engine and their contribution to climate change gained major importance among airlines operating across European Union member countries after the inclusion of the aviation sector in the European Union Emissions Trading Scheme (EU ETS). According to EU ETS, all intra-community flights became subject to GHG emission restrictions since the year 2012 with allocated annual carbon dioxide emission allowances that airlines will have to comply with. This research presents estimations of fuel consumption and carbon dioxide emissions among flight operations of aircraft used by largest European airlines in chosen flight routes of high daily passenger demand. Results show that some alternatives remain available for European airlines and some opportunities may emerge to reduce costs and increase revenues through enhanced engagement with air passengers towards a more environmentally friendly behaviour.

Suggested Citation

  • Ticiano Costa Jordão, 2016. "Analysis of fuel efficiency of largest European airlines in the context of climate change mitigation," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 39(3/4), pages 253-270.
  • Handle: RePEc:ids:ijgeni:v:39:y:2016:i:3/4:p:253-270
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=76348
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Cherie, 2009. "The implications of environmental costs on air passenger demand for different airline business models," Journal of Air Transport Management, Elsevier, vol. 15(4), pages 158-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvador Cruz Rambaud & Joaquín López Pascual & Juan Carlos Meléndez Rodríguez, 2021. "Sustainability in the Aerospace Sector, a Transition to Clean Energy: The E 2 -EVM Valuation Model," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    2. Grampella, Mattia & Martini, Gianmaria & Scotti, Davide & Zambon, Giovanni, 2016. "The factors affecting pollution and noise environmental costs of the current aircraft fleet: An econometric analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 310-325.
    3. Mengyuan Sun & Yong Tian & Yao Zhang & Muhammad Nadeem & Can Xu, 2021. "Environmental Impact and External Costs Associated with Hub-and-Spoke Network in Air Transport," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    4. Belén Payán‐Sánchez & Miguel Pérez‐Valls & José Antonio Plaza‐Úbeda & Diego Vázquez‐Brust, 2022. "Network ambidexterity and environmental performance: Code‐sharing in the airline industry," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1169-1183, March.
    5. Mancuso, Paolo, 2014. "An analysis of the competition that impinges on the Milan–Rome intercity passenger transport link," Transport Policy, Elsevier, vol. 32(C), pages 42-52.
    6. Lo, Pak Lam & Martini, Gianmaria & Porta, Flavio & Scotti, Davide, 2020. "The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy)," Transport Policy, Elsevier, vol. 91(C), pages 108-119.
    7. Niu, Shih-Yuan & Liu, Chiung-Lin & Chang, Chih-Ching & Ye, Kung-Don, 2016. "What are passenger perspectives regarding airlines' environmental protection? An empirical investigation in Taiwan," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 84-91.
    8. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    9. Hu, Rong & Chen, Lin & Zheng, Lijun, 2018. "Congestion pricing and environmental cost at Guangzhou Baiyun International Airport," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 126-132.
    10. Scheelhaase, Janina & Maertens, Sven & Grimme, Wolfgang & Jung, Martin, 2018. "EU ETS versus CORSIA – A critical assessment of two approaches to limit air transport's CO2 emissions by market-based measures," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 55-62.
    11. Hughes, Larry, 2015. "The effects of event occurrence and duration on resilience and adaptation in energy systems," Energy, Elsevier, vol. 84(C), pages 443-454.
    12. Davies, Zoe G. & Armsworth, Paul R., 2010. "Making an impact: The influence of policies to reduce emissions from aviation on the business travel patterns of individual corporations," Energy Policy, Elsevier, vol. 38(12), pages 7634-7638, December.
    13. Grampella, Mattia & Lo, Pak Lam & Martini, Gianmaria & Scotti, Davide, 2017. "The impact of technology progress on aviation noise and emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 525-540.
    14. Belén Payán-Sánchez & Miguel Pérez-Valls & José Antonio Plaza-Úbeda, 2019. "The Contribution of Global Alliances to Airlines’ Environmental Performance," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    15. Oesingmann, Katrin, 2022. "The effect of the European Emissions Trading System (EU ETS) on aviation demand: An empirical comparison with the impact of ticket taxes," Energy Policy, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijgeni:v:39:y:2016:i:3/4:p:253-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=13 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.