IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v7y2013i2p24.html
   My bibliography  Save this article

Solar Chimney Model Parameters to Enhance Cooling PV Panel Performance

Author

Listed:
  • Mohammed Elden
  • K. Sopian
  • Fatah Alghoul
  • Abdelnasser Abouhnik
  • Ae. M.

Abstract

The concept of using the Solar Chimney plays an important role in a wide range of topics to improve cooling system efficiency such as drying process, and single and multi-story buildings ventilation against temperature rising. In this paper, study the effective solar cooling chimney parameter model to enhance the performance of photovoltaic (PV) cooling system. First, a brief description of theoretical performance predictions of the solar cooling chimney also discusses the effect of the ambient wind velocity on the photovoltaic panel. Second, analysis air velocities at different points in solar cooling chimney are predicted and the temperature drop also estimated to predicted air velocities in the duct. Finally, from simulation result it was found for chimney height range 0.3 m - 3 m and at 60 oC, the air velocity increase from 0.6 to 1.78 m/s and Pressure difference between inlet and outlet increase from 0.5 to 5.3 KPa, which improve the PV panel voltage 8%.

Suggested Citation

  • Mohammed Elden & K. Sopian & Fatah Alghoul & Abdelnasser Abouhnik & Ae. M., 2013. "Solar Chimney Model Parameters to Enhance Cooling PV Panel Performance," Modern Applied Science, Canadian Center of Science and Education, vol. 7(2), pages 1-24, February.
  • Handle: RePEc:ibn:masjnl:v:7:y:2013:i:2:p:24
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/22097/15291
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/22097
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sandberg, M. & Moshfegh, B., 1996. "Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, part II - Experimental study," Renewable Energy, Elsevier, vol. 8(1), pages 254-258.
    2. Moshfegh, B. & Sandberg, M., 1996. "Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, part I - Numerical Study," Renewable Energy, Elsevier, vol. 8(1), pages 248-253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonui, J.K. & Tripanagnostopoulos, Y., 2007. "Improved PV/T solar collectors with heat extraction by forced or natural air circulation," Renewable Energy, Elsevier, vol. 32(4), pages 623-637.
    2. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    3. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    4. Moshfegh, B. & Sandberg, M., 1998. "Flow and heat transfer in the air gap behind photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(3), pages 287-301, September.
    5. Zapałowicz, Zbigniew & Zeńczak, Wojciech, 2021. "The possibilities to improve ship's energy efficiency through the application of PV installation including cooled modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Han, Jun & Lu, Lin & Yang, Hongxing, 2010. "Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings," Applied Energy, Elsevier, vol. 87(11), pages 3431-3437, November.
    7. Sandberg, Mats & Moshfegh, Bahram, 1998. "Ventilated-solar roof air flow and heat transfer investigation," Renewable Energy, Elsevier, vol. 15(1), pages 287-292.
    8. Kundakci Koyunbaba, Basak & Yilmaz, Zerrin, 2012. "The comparison of Trombe wall systems with single glass, double glass and PV panels," Renewable Energy, Elsevier, vol. 45(C), pages 111-118.
    9. Stazi, F. & Tomassoni, F. & Vegliò, A. & Di Perna, C., 2011. "Experimental evaluation of ventilated walls with an external clay cladding," Renewable Energy, Elsevier, vol. 36(12), pages 3373-3385.
    10. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    11. Mukherjee, S. & Shit, G.C., 2022. "Mathematical modeling of electrothermal couple stress nanofluid flow and entropy in a porous microchannel under injection process," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    12. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    13. Dawood, Norhan I. & Jalil, Jalal M. & Ahmed, Majida K., 2022. "Investigation of a novel window solar air collector with 7-moveable absorber plates," Energy, Elsevier, vol. 257(C).
    14. Zhang, Xingxing & Zhao, Xudong & Xu, Jihuan & Yu, Xiaotong, 2013. "Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system," Applied Energy, Elsevier, vol. 102(C), pages 1229-1245.
    15. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:7:y:2013:i:2:p:24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.