IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v12y2022i12p245.html
   My bibliography  Save this article

Detecting the Fluctuations in Large Samples Using Wavelet Transform

Author

Listed:
  • S. AL Wadi
  • Ghassan Obeidat

Abstract

structure break is a famous features in stock market data that gain consideration from many kind of researchers. Generally, it occurs because of unexpected variations in the strategy of the government. Recently, wavelet method (WT) is more popular in the stock market data analysis since it has significant benefits than the other traditional methods. In this research paper, the discrete wavelet transform (DWT) based on Daubechies model will be used to capture the structure break in Amman stocks market /Jordan (ASE) using dataset from 2010 until 2018.

Suggested Citation

  • S. AL Wadi & Ghassan Obeidat, 2018. "Detecting the Fluctuations in Large Samples Using Wavelet Transform," Modern Applied Science, Canadian Center of Science and Education, vol. 12(12), pages 245-245, December.
  • Handle: RePEc:ibn:masjnl:v:12:y:2022:i:12:p:245
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/37537/37862
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/37537
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yogo, Motohiro, 2008. "Measuring business cycles: A wavelet analysis of economic time series," Economics Letters, Elsevier, vol. 100(2), pages 208-212, August.
    2. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    3. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stelios Bekiros & Jose Arreola Hernandez & Gazi Salah Uddin & Ahmed Taneem Muzaffar, 2020. "On the predictability of crude oil market: A hybrid multiscale wavelet approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 599-614, July.
    2. Alqaralleh, Huthaifa & Canepa, Alessandra & Chini, Zanetti, 2021. "Financial Contagion During the Covid-19 Pandemic: A Wavelet-Copula-GARCH Approach," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202110, University of Turin.
    3. Ardila, Diego & Sornette, Didier, 2016. "Dating the financial cycle with uncertainty estimates: a wavelet proposition," Finance Research Letters, Elsevier, vol. 19(C), pages 298-304.
    4. Huang, Yuting & Li, Qiang & Liow, Kim Hiang & Zhou, Xiaoxia, 2020. "Is Housing the Business Cycle? A Multiresolution Analysis for OECD Countries," Journal of Housing Economics, Elsevier, vol. 49(C).
    5. Maissa Elmrabet & Boulila Ghazi, 2018. "Causality deficit-inflation : wavelet transform," Working Papers hal-01941464, HAL.
    6. Harald Schmidbauer & Angi Rösch & Erhan Uluceviz, 2012. "Connectedness Cycles in Equity Markets: A Wavelet Approach," EcoMod2012 4502, EcoMod.
    7. Marco Gallegati & Mauro Gallegati, 2005. "Wavelet variance and correlation analyses of output in G7 countries," Macroeconomics 0512017, University Library of Munich, Germany.
    8. Kashif Islam & Ahmad Raza Bilal & Syed Anees Haider Zaidi, 2022. "Symmetric and asymmetric nexus between economic freedom and stock market development in Pakistan," Economic Change and Restructuring, Springer, vol. 55(4), pages 2391-2421, November.
    9. Yushu Li & Fredrik N. G. Andersson, 2021. "A simple wavelet-based test for serial correlation in panel data models," Empirical Economics, Springer, vol. 60(5), pages 2351-2363, May.
    10. Dimitrios Panagiotou & Athanassios Stavrakoudis, 2023. "Price dependence among the major EU extra virgin olive oil markets: a time scale analysis," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(1), pages 1-26, March.
    11. Nigatu, Getachew & Adjemian, Michael K., 2016. "The U.S. Role in the Price Determination of Major Agricultural Commodities," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236045, Agricultural and Applied Economics Association.
    12. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    13. Les Oxley & Chris Price & William Rea & Marco Reale, 2008. "A New Procedure to Test for H Self-Similarity," Working Papers in Economics 08/16, University of Canterbury, Department of Economics and Finance.
    14. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    16. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    17. Asgharian, Hossein, 2011. "A conditional asset-pricing model with the optimal orthogonal portfolio," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1027-1040, May.
    18. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    19. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    20. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    21. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:12:y:2022:i:12:p:245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.