Bayesian Inference in a Joint Model for Longitudinal and Time to Event Data with Gompertz Baseline Hazards
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yueh-Yun Chi & Joseph G. Ibrahim, 2006. "Joint Models for Multivariate Longitudinal and Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 62(2), pages 432-445, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Melkamu Molla Ferede & Samuel Mwalili & Getachew Dagne & Simon Karanja & Workagegnehu Hailu & Mahmoud El-Morshedy & Afrah Al-Bossly, 2022. "A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and Competing Risks Failure Time Data: With Application to Chronic Kidney Disease," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Danjie & Chen, Ming-Hui & Ibrahim, Joseph G. & Boye, Mark E. & Shen, Wei, 2016. "JMFit: A SAS Macro for Joint Models of Longitudinal and Survival Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i03).
- Beilin Jia & Donglin Zeng & Jason J. Z. Liao & Guanghan F. Liu & Xianming Tan & Guoqing Diao & Joseph G. Ibrahim, 2022. "Mixture survival trees for cancer risk classification," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 356-379, July.
- Oi, Katsuya, 2020. "Disuse as time away from a cognitively demanding job; how does it temporally or developmentally impact late-life cognition?," Intelligence, Elsevier, vol. 82(C).
- Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
- Yangxin Huang & Xiaosun Lu & Jiaqing Chen & Juan Liang & Miriam Zangmeister, 2018. "Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 699-718, October.
- Hongtu Zhu & Joseph G. Ibrahim & Yueh-Yun Chi & Niansheng Tang, 2012. "Bayesian Influence Measures for Joint Models for Longitudinal and Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 954-964, September.
- Kamaryn T. Tanner & Linda D. Sharples & Rhian M. Daniel & Ruth H. Keogh, 2021. "Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 3-30, January.
- repec:jss:jstsof:35:i09 is not listed on IDEAS
- Marta Spreafico & Francesca Ieva & Marta Fiocco, 2023. "Modelling time-varying covariates effect on survival via functional data analysis: application to the MRC BO06 trial in osteosarcoma," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 271-298, March.
- Peihua Qiu & Lu You, 2022. "Dynamic disease screening by joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1158-1180, November.
- Medina-Olivares, Victor & Lindgren, Finn & Calabrese, Raffaella & Crook, Jonathan, 2023. "Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour," European Journal of Operational Research, Elsevier, vol. 310(2), pages 860-873.
- Dilip C. Nath & Atanu Bhattacharjee, 2014. "Joint longitudinal and survival data modelling: an application in anti-diabetes drug therapeutic effect," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 437-452, June.
- An-Min Tang & Nian-Sheng Tang & Dalei Yu, 2023. "Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 888-918, October.
- Philippe Lambert & Vincent Bremhorst, 2020. "Inclusion of time‐varying covariates in cure survival models with an application in fertility studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 333-354, January.
- Jiawei Xu & Matthew A. Psioda & Joseph G. Ibrahim, 2023. "Bayesian Design of Clinical Trials Using Joint Cure Rate Models for Longitudinal and Time-to-Event Data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 213-233, January.
- T. Baghfalaki & M. Ganjali & D. Berridge, 2014. "Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1934-1955, September.
- Atanu B & Gajendra V & Jesna J & Ramesh V, 2017. "Multiple Imputations for Determining an Optimum Biological Dose of a Metronomic Chemotherapy," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(5), pages 129-140, October.
- Shahedul A. Khan & Nyla Basharat, 2022. "Accelerated failure time models for recurrent event data analysis and joint modeling," Computational Statistics, Springer, vol. 37(4), pages 1569-1597, September.
- Vincent Bremhorst & Michaela Kreyenfeld & Philippe Lambert, 2016. "Fertility progression in Germany: An analysis using flexible nonparametric cure survival models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 35(18), pages 505-534.
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:12:y:2018:i:9:p:159. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.