IDEAS home Printed from https://ideas.repec.org/a/ibn/jsd123/v10y2017i6p262.html
   My bibliography  Save this article

Economic Evaluation of Bioenergy Production from Bio-based plants in Germany: Implications for the bioeconomy?

Author

Listed:
  • Martin Paul Jr. Tabe-Ojong
  • Naphtal Habiyaremye

Abstract

The production of bioenergy from plant sources has been an emerging issue in the global bioeconomy. This is as a result of the depletion of fossil fuel sources and its high adverse effects on the environment as the main source of conventional energy. Biobased products from fruit trees and crops have been thought and proven to play an important role in supplying future bioenergy and contributing to the achievement of some sustainable development goals. Many studies have focused on this novel technology without focusing on the economic aspect of it. In a bid to build and improve on literature, this study sought to economically evaluate the production of bioenergy from biomass using robust and standard profitability measures like the net present value (NPV), internal rate of return (IRR) and the payback period (PBP). Data was obtained through expert interviews from the Klein-Altendorf project site in Bonn, Germany. A business as usual scenario and a carbon avoidance scenario were investigated to ascertain the economic viability of this sustainable activity. Results in the business as usual scenario showed the process as a non-profitable venture. However, based on the carbon avoidance scenario, we argued that the project is economically viable especially in terms of carbon avoidance which reduces emissions and goes a long way to protect the environment. These social benefits obtained make the investment worthy. The greatest constraint and cost come from establishing such initiatives. The study found initial investment costs to be very high. Moreover, bioenergy produced is valued at the same price like energy produced from fossil fuels despite its numerous benefits to the environment. The results recommend to policy the maintenance of such initiatives as they have a big role to play in the global bioeconomy. In addition, other countries should join Germany in supporting this initiative by subsidising producers of bioenergy. This is justifiable and arguably the reason for Germany’s global recognition in bioeconomic issues.

Suggested Citation

  • Martin Paul Jr. Tabe-Ojong & Naphtal Habiyaremye, 2017. "Economic Evaluation of Bioenergy Production from Bio-based plants in Germany: Implications for the bioeconomy?," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 10(6), pages 262-262, October.
  • Handle: RePEc:ibn:jsd123:v:10:y:2017:i:6:p:262
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jsd/article/download/72136/39501
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jsd/article/view/72136
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kovacevic, Vujadin & Wesseler, Justus, 2010. "Cost-effectiveness analysis of algae energy production in the EU," Energy Policy, Elsevier, vol. 38(10), pages 5749-5757, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    4. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    5. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    7. Adenle, Ademola A. & Haslam, Gareth E. & Lee, Lisa, 2013. "Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries," Energy Policy, Elsevier, vol. 61(C), pages 182-195.
    8. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    10. Moslem Mousavi, Sayed & Bagheri Ghanbarabadi, Morteza & Bagheri Moghadam, Naser, 2012. "The competitiveness of wind power compared to existing methods of electricity generation in Iran," Energy Policy, Elsevier, vol. 42(C), pages 651-656.
    11. Dutta, Kasturi & Daverey, Achlesh & Lin, Jih-Gaw, 2014. "Evolution retrospective for alternative fuels: First to fourth generation," Renewable Energy, Elsevier, vol. 69(C), pages 114-122.
    12. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    13. Takeshita, Takayuki, 2011. "Competitiveness, role, and impact of microalgal biodiesel in the global energy future," Applied Energy, Elsevier, vol. 88(10), pages 3481-3491.
    14. Piloto-Rodríguez, Ramón & Sánchez-Borroto, Yisel & Melo-Espinosa, Eliezer Ahmed & Verhelst, Sebastian, 2017. "Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 833-842.
    15. Speranza, Lais Galileu & Ingram, Andrew & Leeke, Gary A., 2015. "Assessment of algae biodiesel viability based on the area requirement in the European Union, United States and Brazil," Renewable Energy, Elsevier, vol. 78(C), pages 406-417.
    16. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal F., 2011. "Algae as a sustainable energy source for biofuel production in Iran: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3870-3876.
    17. Chakrabarti, Mohammed Harun & Ali, Mehmood & Usmani, Jafar Nazir & Khan, Nasim Ahmed & Hasan, Diya'uddeen Basheer & Islam, Md. Sakinul & Abdul Raman, Abdul Aziz & Yusoff, Rozita & Irfan, Muhammad Fais, 2012. "Status of biodiesel research and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4396-4405.
    18. Loan T. Le, 2016. "Biofuel Production in Vietnam: Cost-Effectiveness, Energy and GHG Balances," EEPSEA Research Report rr20160315, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2016.
    19. Sun, Jun & Xiong, Xiaoqian & Wang, Mudan & Du, Hua & Li, Jintao & Zhou, Dandan & Zuo, Jian, 2019. "Microalgae biodiesel production in China: A preliminary economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 296-306.
    20. Jiang, Lu & Xue, Bing & Ma, Zhixiao & Yu, Lu & Huang, Beijia & Chen, Xingpeng, 2020. "A life-cycle based co-benefits analysis of biomass pellet production in China," Renewable Energy, Elsevier, vol. 154(C), pages 445-452.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jsd123:v:10:y:2017:i:6:p:262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.