IDEAS home Printed from https://ideas.repec.org/a/ibn/jsd123/v10y2017i5p198.html
   My bibliography  Save this article

The Impact of Built Environment Characteristics on Energy Consumption Using Geographically Weighted Regression in Mashhad, Iran

Author

Listed:
  • Bita Rezaeian
  • Mohammad Rahim Rahnama
  • Jafar Javan
  • Omid Ali Kharazmi

Abstract

Concerns over rising fuel consumption have prompted research into the influences of built environments on travel behavior. On the basis of data from origin-destination(OD) travel survey data of Mashhad (74287 trip data in 2011) and using Geographically Weighted Regression, socio-demographic characteristics, are shown to be strongly and positively associated with the fuel consumption per capita (car ownership elasticity=0.347878); we also found a positive association between distance to center and designs that are not pedestrian friendly with fuel consumption (average block size=0.147489, distance to center =0.334953) Although the study demonstrates a moderately strong negative elasticity between population density and the fuel consumption(population density = -0.259335). It suggests that the largest energy consumption reductions would come from creating compact communities which have land-use diversity and more walkable areas with pedestrian cycling infrastructure around all of the stations along transit lines.In order to enhance a sustainable urban plan, the socio-economic driving factors should be considered as one of the main element of energy consumption as well.

Suggested Citation

  • Bita Rezaeian & Mohammad Rahim Rahnama & Jafar Javan & Omid Ali Kharazmi, 2017. "The Impact of Built Environment Characteristics on Energy Consumption Using Geographically Weighted Regression in Mashhad, Iran," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 10(5), pages 198-198, September.
  • Handle: RePEc:ibn:jsd123:v:10:y:2017:i:5:p:198
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jsd/article/download/69897/38718
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jsd/article/view/69897
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lisa Schweitzer & Jiangping Zhou, 2010. "Neighborhood Air Quality, Respiratory Health, and Vulnerable Populations in Compact and Sprawled Regions," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 363-371.
    2. Toshiyuki Yamamoto, 2009. "Comparative analysis of household car, motorcycle and bicycle ownership between Osaka metropolitan area, Japan and Kuala Lumpur, Malaysia," Transportation, Springer, vol. 36(3), pages 351-366, May.
    3. Hickman, Robin & Ashiru, Olu & Banister, David, 2010. "Transport and climate change: Simulating the options for carbon reduction in London," Transport Policy, Elsevier, vol. 17(2), pages 110-125, March.
    4. Crane, Randall & Crepeau, Richard, 1998. "Does Neighborhood Design Influence Travel?: Behavioral Analysis of Travel Diary and GIS Data," University of California Transportation Center, Working Papers qt4pj4s7t8, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    2. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    3. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    4. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    5. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    6. Fang Wang & Yaoyao Peng & Chunyan Jiang, 2017. "Influence of Road Patterns on PM 2.5 Concentrations and the Available Solutions: The Case of Beijing City, China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    7. João De Abreu e Silva, 2018. "The Effects of Land-Use Patterns on Home-Based Tour Complexity and Total Distances Traveled: A Path Analysis," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    8. Javier Asensio, 2002. "Transport Mode Choice by Commuters to Barcelona's CBD," Urban Studies, Urban Studies Journal Limited, vol. 39(10), pages 1881-1895, September.
    9. Juwon Chung & Seung-Nam Kim & Hyungkyoo Kim, 2019. "The Impact of PM 10 Levels on Pedestrian Volume: Findings from Streets in Seoul, South Korea," IJERPH, MDPI, vol. 16(23), pages 1-23, December.
    10. Sumeeta Srinivasan, 2002. "Quantifying Spatial Characteristics of Cities," Urban Studies, Urban Studies Journal Limited, vol. 39(11), pages 2005-2028, October.
    11. Chiu, Bing-yu, 2023. "Relationship between motorcycle travel and the built environment: Evidence from Taipei, Taiwan," Journal of Transport Geography, Elsevier, vol. 110(C).
    12. Bhat, Furqan A. & Verma, Ashish, 2024. "Electric two-wheeler adoption in India – A discrete choice analysis of motivators and barriers affecting the potential electric two-wheeler buyers," Transport Policy, Elsevier, vol. 152(C), pages 118-131.
    13. Mindali, Orit & Raveh, Adi & Salomon, Ilan, 2004. "Urban density and energy consumption: a new look at old statistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 143-162, February.
    14. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.
    15. Hedefalk, Finn & van Dijk, Ingrid K & Dribe, Martin, 2022. "Childhood neighborhoods and cause-specific adult mortality in Sweden 1939-2015," SocArXiv ynpb3, Center for Open Science.
    16. Law, Teik Hua & Hamid, Hussain & Goh, Chia Ning, 2015. "The motorcycle to passenger car ownership ratio and economic growth: A cross-country analysis," Journal of Transport Geography, Elsevier, vol. 46(C), pages 122-128.
    17. Tomás Ruiz & Rosa Arroyo & Lidón Mars & Daniel Casquero, 2018. "Effects of a Travel Behaviour Change Program on Sustainable Travel," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    18. Pawinee Iamtrakul & Sararad Chayphong & Adrian Yat Wai Lo, 2022. "Exploring the Contribution of Social and Economic Status Factors (SES) to the Development of Learning Cities (LC)," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    19. Focas, Caralampo, 2016. "Travel behaviour and CO2 emissions in urban and exurban London and New York," Transport Policy, Elsevier, vol. 46(C), pages 82-91.
    20. Boeing, Geoff & Pilgram, Clemens & Lu, Yougeng, 2024. "Urban Street Network Design and Transport-Related Greenhouse Gas Emissions around the World," SocArXiv r32vj, Center for Open Science.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jsd123:v:10:y:2017:i:5:p:198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.