IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v11y2024i10p14.html
   My bibliography  Save this article

Characterizing the Drivers of Global Food Trade Growth in 21th Century

Author

Listed:
  • Silvia Andrés González-Moralejo
  • Juan Francisco López Miquel

Abstract

21st century is characterised by a steady growth in the global demand for basic foodstuffs. This paper reviews the drivers of this growth, through a descriptive analysis of the main literature on the subject, in order to synthesize the most relevant information generated by researchers and position the current state of the issue. The results of the analysis suggest that emerging economies have taken over in the increase of food imports; this is due to the potential of countries such as China, India, Brazil and Russia, which have become propellers of the global economy. From the developing countries, the increase in population and income are the driving forces behind the dynamism of world food demand, whose direct consequences are the increase in per capita consumption, the acceleration of the urbanization process in these regions and the increase in the consumption of products with greater added value. In developed economies, increases in per capita income do not translate into increases in the demand for food; rather, its role with respect to global demand is to promote it as they deepen the production of biofuels, the liberalization of the agricultural sector and the signing of trade agreements. Finally, the work concludes by warning about the uncertainties that surround the demand for food imports, including the crucial role played by climate change.

Suggested Citation

  • Silvia Andrés González-Moralejo & Juan Francisco López Miquel, 2024. "Characterizing the Drivers of Global Food Trade Growth in 21th Century," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(10), pages 1-14, April.
  • Handle: RePEc:ibn:jasjnl:v:11:y:2024:i:10:p:14
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/0/0/39883/40945
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/0/39883
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gal Hochman & Deepak Rajagopal & David Zilberman, 2011. "The Effect of Biofuels on the International Oil Market," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 402-427.
    2. Fan, Shenggen & Headey, Derek, 2010. "Reflections on the global food crisis: How did it happen? How has it hurt? And how can we prevent the next one?," Research reports 165, International Food Policy Research Institute (IFPRI).
    3. Gal Hochman & Deepak Rajagopal & David Zilberman, 2011. "The Effect of Biofuels on the International Oil Market-super- ," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 402-427.
    4. Larson, Bruce A. & Scatasta, Sara, 2005. "Modeling the impacts of environmental policies on agricultural imports," Journal of Policy Modeling, Elsevier, vol. 27(5), pages 565-574, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    2. Maura Allaire and Stephen P. A. Brown, 2015. "The Green Paradox of U.S. Biofuel Subsidies: Impact on Greenhouse Gas Emissions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    3. Philip Abbott, 2014. "Biofuels, Binding Constraints, and Agricultural Commodity Price Volatility," NBER Chapters, in: The Economics of Food Price Volatility, pages 91-131, National Bureau of Economic Research, Inc.
    4. Antonio M. Bento, Richard Klotz, and Joel R. Landry, 2015. "Are there Carbon Savings from US Biofuel Policies? The Critical Importance of Accounting for Leakage in Land and Fuel Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. Sexton, Steven & Eyer, Jonathan, 2016. "Leveling the playing field of transportation fuels: Accounting for indirect emissions of natural gas," Energy Policy, Elsevier, vol. 95(C), pages 21-31.
    6. Doshi, Amar & Pascoe, Sean & Coglan, Louisa & Rainey, Thomas J., 2016. "Economic and policy issues in the production of algae-based biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 329-337.
    7. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    8. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    9. Ram N. Acharya & Rafael Perez-Pena, 2020. "Role of Comparative Advantage in Biofuel Policy Adoption in Latin America," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    10. Hill, Jason & Tajibaeva, Liaila & Polasky, Stephen, 2016. "Climate consequences of low-carbon fuels: The United States Renewable Fuel Standard," Energy Policy, Elsevier, vol. 97(C), pages 351-353.
    11. Gal Hochman & David Zilberman, 2018. "Corn Ethanol and U.S. Biofuel Policy 10 Years Later: A Quantitative Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 570-584.
    12. Ivanic, Maros & Martin, Will & Zaman, Hassan, 2012. "Estimating the Short-Run Poverty Impacts of the 2010–11 Surge in Food Prices," World Development, Elsevier, vol. 40(11), pages 2302-2317.
    13. Davinson Stev Abril‐Salcedo & Luis Fernando Melo‐Velandia & Daniel Parra‐Amado, 2020. "Nonlinear relationship between the weather phenomenon El niño and Colombian food prices," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1059-1086, October.
    14. Headey, Derek, 2011. "Rethinking the global food crisis: The role of trade shocks," Food Policy, Elsevier, vol. 36(2), pages 136-146, April.
    15. Rotem Zelingher & David Makowski & Thierry Brunelle, 2020. "Forecasting impacts of Agricultural Production on Global Maize Price [Prévision des impacts de la production agricole sur les prix mondiaux du maïs]," Working Papers hal-02945775, HAL.
    16. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    17. Drabik, Dusan, 2011. "The Theory of Biofuel Policy and Food Grain Prices," Working Papers 126615, Cornell University, Department of Applied Economics and Management.
    18. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    19. Bednar-Friedl, Birgit & Knittel, Nina & Raich, Joachim & Adams, Kevin M., 2022. "Adaptation to transboundary climate risks in trade: investigating actors and strategies for an emerging challenge," LSE Research Online Documents on Economics 113693, London School of Economics and Political Science, LSE Library.
    20. Headey, Derek D., 2010. "Rethinking the global food crisis: The role of trade shocks," IFPRI discussion papers 958, International Food Policy Research Institute (IFPRI).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:11:y:2024:i:10:p:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.