IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v9y2020i6p113.html
   My bibliography  Save this article

Estimation of VECM Parameter Using Bayesian Approach: An Application to Analysis of Macroeconomic Variables

Author

Listed:
  • Meilina Retno Hapsari
  • Suci Astutik
  • Loekito Adi Soehono

Abstract

This study uses the Bayesian approach to estimate Vector Error Correction Model (VECM). The aim of this study is to analyze the relationship between macroeconomic variables in Indonesia. To analyze the best method to influence government targets or policies on economic growth by studying the relationships of many macroeconomic variables. Previous studies in analyzing the relationship between macroeconomic variables with VECM analysis, using the Maximum Likelihood Estimation. However, this estimation method cannot solve the problem of overparameterization in VECM model. The variables used in this study are six macroeconomic variables in Indonesia in 2010 quarter 1 to 2019 quarter 4 are GDP, the money supply, exchange rate of rupiah to US dollar, exports, imports and interest rates. The number of data in this study is less than the number of estimated parameters causing overparameterization problems. Therefore, this study uses the Bayesian parameter estimation method to avoid overparameterization problems in economic data. The model obtained from this study is the BVECM(3) and it has been proven that the model is suitable (the model diagnostic test). Based on the parameter estimation results of BVECM(3), the significant variables affecting GDP are GDP itself, the money supply, exchange rate of rupiah to US Dollar, exports, imports and the interest rate for Bank Indonesia Certificates. In addition, there is a two-way relationship that affects each other, namely the relationship between GDP and the money supply, exports and imports, exports and interest rates, and between imports and interest rates.

Suggested Citation

  • Meilina Retno Hapsari & Suci Astutik & Loekito Adi Soehono, 2020. "Estimation of VECM Parameter Using Bayesian Approach: An Application to Analysis of Macroeconomic Variables," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 113-113, November.
  • Handle: RePEc:ibn:ijspjl:v:9:y:2020:i:6:p:113
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/44018/46317
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/44018
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, June.
    2. Esen, Ömer & Bayrak, Metin, 2017. "Does More Energy Consumption Support Economic Growth in Net Energy-Importing Countries?," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 22(42), pages 75-98.
    3. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    4. Nasser Ebrahimi, 2017. "An Analysis of the Relationship of Imports and Economic Growth in Iran (Comparison of Systematic and Unsystematic Cointegration Methods with Neural Network)," International Journal of Economics and Financial Issues, Econjournals, vol. 7(2), pages 338-347.
    5. Villani, Mattias, 2005. "Bayesian Reference Analysis Of Cointegration," Econometric Theory, Cambridge University Press, vol. 21(2), pages 326-357, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    2. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    3. MAMATZAKIS, emmanuel & MAMATZAKIS, E, 2022. "Understanding the impact of travel on wellbeing: evidence for Great Britain during the pandemic," MPRA Paper 112974, University Library of Munich, Germany.
    4. Ciobotaru, Corina & Mazza, Christian, 2022. "Consistency and asymptotic normality of M-estimates of scatter on Grassmann manifolds," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    6. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    7. Andrejs Zlobins, 2020. "Country-level effects of the ECB’s expanded asset purchase programme," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 20(2), pages 187-217.
    8. Anttonen, Jetro, 2018. "Nowcasting the Unemployment Rate in the EU with Seasonal BVAR and Google Search Data," ETLA Working Papers 62, The Research Institute of the Finnish Economy.
    9. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    10. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    11. Cubadda, Gianluca & Hecq, Alain & Palm, Franz C., 2009. "Studying co-movements in large multivariate data prior to multivariate modelling," Journal of Econometrics, Elsevier, vol. 148(1), pages 25-35, January.
    12. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    13. Ashima Goyal & Akhilesh K. Verma & Rajeswari Sengupta, 2022. "External shocks, cross-border flows and macroeconomic risks in emerging market economies," Empirical Economics, Springer, vol. 62(5), pages 2111-2148, May.
    14. Ana María Iregui & Jesús Otero, 2013. "A Spatiotemporal Analysis of Agricultural Prices: An Application to Colombian Data," Agribusiness, John Wiley & Sons, Ltd., vol. 29(4), pages 497-508, September.
    15. Cudjoe, Godsway & Breisinger, Clemens & Diao, Xinshen, 2010. "Local impacts of a global crisis: Food price transmission, consumer welfare and poverty in Ghana," Food Policy, Elsevier, vol. 35(4), pages 294-302, August.
    16. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    18. Kühl, Michael, 2007. "Cointegration in the foreign exchange market and market efficiency since the introduction of the Euro: Evidence based on bivariate cointegration analyses," University of Göttingen Working Papers in Economics 68, University of Goettingen, Department of Economics.
    19. Wamiliana Wamiliana & Edwin Russel & Iskandar Ali Alam & Widiarti Widiarti & Tuti Hairani & Mustofa Usman, 2024. "Modeling and Forecasting Closing Prices of some Coal Mining Companies in Indonesia by Using the VAR(3)-BEKK GARCH(1,1) Model," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 579-591, January.
    20. Angela S. Bergantino & Claudia Capozza & Mauro Capurso, 2018. "Pricing strategies: who leads and who follows in the air and rail passenger markets in Italy," Applied Economics, Taylor & Francis Journals, vol. 50(46), pages 4937-4953, October.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:9:y:2020:i:6:p:113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.