IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v9y2020i5p40.html
   My bibliography  Save this article

Estimating Smooth and Convex Functions

Author

Listed:
  • Eunji Lim
  • Kihwan Kim

Abstract

We propose a new method for estimating an unknown regression function $f_*-[\alpha, \beta] \rightarrow \mathbb{R}$ from a dataset $(X_1, Y_1), \dots, (X_n,$ $Y_n)$ when the only information available on $f_*$ is the fact that $f_*$ is convex and twice differentiable. In the proposed method, we fit a convex function to the dataset that minimizes the sum of the roughness of the fitted function and the average squared differences between the fitted function and $f_*$. We prove that the proposed estimator can be computed by solving a convex quadratic programming problem with linear constraints. Numerical results illustrate the superior performance of the proposed estimator compared to existing methods when i) $f_*$ is the price of a stock option as a function of the strike price and ii) $f_*$ is the steady-state mean waiting time of a customer in a single server queue.

Suggested Citation

  • Eunji Lim & Kihwan Kim, 2020. "Estimating Smooth and Convex Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(5), pages 1-40, September.
  • Handle: RePEc:ibn:ijspjl:v:9:y:2020:i:5:p:40
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/43351/45747
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/43351
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    2. Daisuke Yagi & Yining Chen & Andrew L. Johnson & Timo Kuosmanen, 2020. "Shape-Constrained Kernel-Weighted Least Squares: Estimating Production Functions for Chilean Manufacturing Industries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 43-54, January.
    3. Zheng Li & Guannan Liu & Qi Li, 2017. "Nonparametric Knn estimation with monotone constraints," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 988-1006, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    2. Tai-Hsin Huang & Yi-Huang Chiu & Chih-Ying Mao, 2021. "Imposing Regularity Conditions to Measure Banks’ Productivity Changes in Taiwan Using a Stochastic Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(2), pages 273-303, June.
    3. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    4. Mr. Prakash Kannan & Mr. Selim A Elekdag, 2009. "Incorporating Market Information into the Construction of the Fan Chart," IMF Working Papers 2009/178, International Monetary Fund.
    5. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    6. Gagnon, Marie-Hélène & Power, Gabriel J. & Toupin, Dominique, 2023. "The sum of all fears: Forecasting international returns using option-implied risk measures," Journal of Banking & Finance, Elsevier, vol. 146(C).
    7. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
    10. Jarno Talponen, 2013. "Matching distributions: Asset pricing with density shape correction," Papers 1312.4227, arXiv.org, revised Mar 2018.
    11. Marcin Kacperczyk & Paul Damien & Stephen G. Walker, 2013. "A new class of Bayesian semi-parametric models with applications to option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 967-980, May.
    12. Wolfgang Karl Härdle & Yarema Okhrin & Weining Wang, 2015. "Uniform Confidence Bands for Pricing Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 376-413.
    13. Duarte, Jefferson & Longstaff, Francis A. & Yu, Fan, 2005. "Risk and Return in Fixed Income Arbitage: Nickels in Front of a Steamroller?," University of California at Los Angeles, Anderson Graduate School of Management qt6zx6m7fp, Anderson Graduate School of Management, UCLA.
    14. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    15. Robert A. Jarrow & Simon S. Kwok, 2021. "Inferring financial bubbles from option data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 1013-1046, November.
    16. Allan M. Malz, 2014. "Simple and reliable way to compute option-based risk-neutral distributions," Staff Reports 677, Federal Reserve Bank of New York.
    17. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    18. Evgenii Vladimirov, 2023. "iCOS: Option-Implied COS Method," Papers 2309.00943, arXiv.org, revised Feb 2024.
    19. Polkovnichenko, Valery & Zhao, Feng, 2013. "Probability weighting functions implied in options prices," Journal of Financial Economics, Elsevier, vol. 107(3), pages 580-609.
    20. Roussanov, Nikolai, 2014. "Composition of wealth, conditioning information, and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 111(2), pages 352-380.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:9:y:2020:i:5:p:40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.