IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v8y2019i6p23.html
   My bibliography  Save this article

A General Framework for Time Series Forecasting Model Using Autoregressive Integrated Moving Average-ARIMA and Transfer Functions

Author

Listed:
  • G. Solomon Osho

Abstract

Major current econometric stochastic series forecast research are established on the failure of the scholastic process tests to differentiate between finite and stationary alternative samples of the unit root hypothesis results. The importance of forecast evaluation allows researchers to reasonably monitor and improve forecast performance. While a structured improved forecast framework have often been suggested as one possible alternative, an extended the multivariate model which incorporate distributed-lag period for independent variable gives a unique advantage over the traditional distributed-lag model and the mathematical formulation does essentially guarantee that predicated equation irrespective of the values of the predictor variables. Hence, the primary objective is mainly to determine the likelihood of autoregressive integrated moving average (ARIMA) method for practicable process choice used for predicting key economic variables for a set of market data. Once the process has been known, parameters have been obtained, and the adequacy of the model has been determined, forecasts can be checked for reliability.

Suggested Citation

  • G. Solomon Osho, 2019. "A General Framework for Time Series Forecasting Model Using Autoregressive Integrated Moving Average-ARIMA and Transfer Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-23, November.
  • Handle: RePEc:ibn:ijspjl:v:8:y:2019:i:6:p:23
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/40839/42762
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/40839
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalrymple, Douglas J., 1987. "Sales forecasting practices: Results from a United States survey," International Journal of Forecasting, Elsevier, vol. 3(3-4), pages 379-391.
    2. Michael P. Clements & David F. Hendry, 2002. "Modelling methodology and forecast failure," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 319-344, June.
    3. Barry K. Goodwin & Ted C. Schroeder, 1991. "Price Dynamics in International Wheat Markets," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 39(2), pages 237-254, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    2. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    3. Armstrong, J. Scott, 1996. "Factors affecting new product forecasting accuracy in new firms : William B. Gartner, and Robert J. Thomas, 1993, Journal of Productive Innovation Management, 10, 35-52," International Journal of Forecasting, Elsevier, vol. 12(2), pages 321-322, June.
    4. Bernardina Algieri, 2014. "A roller coaster ride: an empirical investigation of the main drivers of the international wheat price," Agricultural Economics, International Association of Agricultural Economists, vol. 45(4), pages 459-475, July.
    5. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    6. Norman Swanson & Oleg Korenok, 2006. "The Incremental Predictive Information Associated with Using Theoretical New Keynesian DSGE Models Versus Simple Linear Alternatives," Departmental Working Papers 200615, Rutgers University, Department of Economics.
    7. Nigatu, Getachew & Adjemian, Michael K., 2016. "The U.S. Role in the Price Determination of Major Agricultural Commodities," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236045, Agricultural and Applied Economics Association.
    8. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    9. Bonache, Adrien, 2008. "Les ventes de produits innovants à la mode sont-elles chaotiques? Le cas des ventes de Game Boy au Japon [Are innovative and fashion goods sales chaotic? The case of Game Boy sales in Japan]," MPRA Paper 12964, University Library of Munich, Germany.
    10. Reimer, Jeffrey J. & Stiegert, Kyle W., 2006. "Evidence on Imperfect Competition and Strategic Trade Theory," Staff Paper Series 498, University of Wisconsin, Agricultural and Applied Economics.
    11. Muellbauer, John & Aron, Janine & Sebudde, Rachel, 2015. "Inflation forecasting models for Uganda: is mobile money relevant?," CEPR Discussion Papers 10739, C.E.P.R. Discussion Papers.
    12. Goodwin, Paul & Önkal, Dilek & Thomson, Mary, 2010. "Do forecasts expressed as prediction intervals improve production planning decisions?," European Journal of Operational Research, Elsevier, vol. 205(1), pages 195-201, August.
    13. Manuel A. Hernandez & Raul Ibarra & Danilo R. Trupkin, 2014. "How far do shocks move across borders? Examining volatility transmission in major agricultural futures markets," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 301-325.
    14. Bardsen, Gunnar & Eitrheim, Oyvind & Jansen, Eilev S. & Nymoen, Ragnar, 2005. "The Econometrics of Macroeconomic Modelling," OUP Catalogue, Oxford University Press, number 9780199246502.
    15. Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
    16. Qin, Duo & Cagas, Marie Anne & Ducanes, Geoffrey & Magtibay-Ramos, Nedelyn & Quising, Pilipinas, 2008. "Automatic leading indicators versus macroeconometric structural models: A comparison of inflation and GDP growth forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 399-413.
    17. Kuo-Yuan Liang & Yu-Ying Kuo, 2004. "Human judgments in New York state sales and use tax forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 297-314.
    18. Merigó, José M. & Palacios-Marqués, Daniel & Ribeiro-Navarrete, Belén, 2015. "Aggregation systems for sales forecasting," Journal of Business Research, Elsevier, vol. 68(11), pages 2299-2304.
    19. Naik, Gopal, 2004. "The structural qualitative method: a promising forecasting tool for developing country markets," International Journal of Forecasting, Elsevier, vol. 20(3), pages 475-485.
    20. Goodwin, Paul, 2002. "Integrating management judgment and statistical methods to improve short-term forecasts," Omega, Elsevier, vol. 30(2), pages 127-135, April.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:8:y:2019:i:6:p:23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.