IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v8y2019i3p1.html
   My bibliography  Save this article

Moment-Based Density Approximation Techniques as Applied to Heavy-tailed Distributions

Author

Listed:
  • John Sang Jin Kang
  • Serge B. Provost
  • Jiandong Ren

Abstract

Several advances are made in connection with the approximation and estimation of heavy-tailed distributions. It is first explained that on initially applying the Esscher transform to heavy-tailed density functions such as the Pareto, Studentt and Cauchy, said densities can be approximated by employing a certain moment-based methodology. Alternatively, density approximants can be obtained by appropriately truncating such distributions or mapping them onto finite supports. These techniques are then extended to the context of density estimation, their validity being demonstrated by means of simulation studies. As well, illustrative actuarial examples are presented.

Suggested Citation

  • John Sang Jin Kang & Serge B. Provost & Jiandong Ren, 2019. "Moment-Based Density Approximation Techniques as Applied to Heavy-tailed Distributions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(3), pages 1-1, November.
  • Handle: RePEc:ibn:ijspjl:v:8:y:2019:i:3:p:1
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/39024/40092
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/39024
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2005. "Option pricing and Esscher transform under regime switching," Annals of Finance, Springer, vol. 1(4), pages 423-432, October.
    2. Resnick, Sidney I., 1997. "Discussion of the Danish Data on Large Fire Insurance Losses," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 139-151, May.
    3. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    4. Samuel H. Cox & Yijia Lin & Shaun Wang, 2006. "Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 719-736, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    2. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    3. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    4. Athanasios Sachlas & Takis Papaioannou, 2014. "Residual and Past Entropy in Actuarial Science and Survival Models," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 79-99, March.
    5. Arthur Charpentier & Emmanuel Flachaire, 2021. "Pareto Models for Risk Management," Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 355-387, Springer.
    6. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    7. Chen, Hua & Cummins, J. David, 2010. "Longevity bond premiums: The extreme value approach and risk cubic pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 150-161, February.
    8. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    9. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    10. N. V. Gribkova & J. Su & R. Zitikis, 2024. "Assessing the coverage probabilities of fixed-margin confidence intervals for the tail conditional allocation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 821-850, October.
    11. Rocco Roberto Cerchiara & Francesco Acri, 2020. "Estimating the Volatility of Non-Life Premium Risk Under Solvency II: Discussion of Danish Fire Insurance Data," Risks, MDPI, vol. 8(3), pages 1-19, July.
    12. Farias, Rafael B.A. & Montoril, Michel H. & Andrade, José A.A., 2016. "Bayesian inference for extreme quantiles of heavy tailed distributions," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 103-107.
    13. Johan René van Dorp & Ekundayo Shittu, 2024. "Two-sided distributions with applications in insurance loss modeling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 827-861, July.
    14. Sidney Resnick & Gennady Samorodnitsky, 2000. "A Heavy Traffic Approximation for Workload Processes with Heavy Tailed Service Requirements," Management Science, INFORMS, vol. 46(9), pages 1236-1248, September.
    15. Okhli, Kheirolah & Jabbari Nooghabi, Mehdi, 2021. "On the contaminated exponential distribution: A theoretical Bayesian approach for modeling positive-valued insurance claim data with outliers," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    16. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    17. Lian, Yu-Min & Chen, Jun-Home, 2021. "Pricing virtual currency-linked derivatives with time-inhomogeneity," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 424-439.
    18. Chen, Fen-Ying & Yang, Sharon S. & Huang, Hong-Chih, 2022. "Modeling pandemic mortality risk and its application to mortality-linked security pricing," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 341-363.
    19. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    20. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing lookback options with regime switching," Papers 1407.4864, arXiv.org.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:8:y:2019:i:3:p:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.