IDEAS home Printed from https://ideas.repec.org/a/hin/jjopti/5650364.html
   My bibliography  Save this article

A Genetic Algorithm Based Approach for Solving the Minimum Dominating Set of Queens Problem

Author

Listed:
  • Saad Alharbi
  • Ibrahim Venkat

Abstract

In the field of computing, combinatorics, and related areas, researchers have formulated several techniques for the Minimum Dominating Set of Queens Problem (MDSQP) pertaining to the typical chessboard based puzzles. However, literature shows that limited research has been carried out to solve the MDSQP using bioinspired algorithms. To fill this gap, this paper proposes a simple and effective solution based on genetic algorithms to solve this classical problem. We report results which demonstrate that near optimal solutions have been determined by the GA for different board sizes ranging from 8 × 8 to 11 × 11.

Suggested Citation

  • Saad Alharbi & Ibrahim Venkat, 2017. "A Genetic Algorithm Based Approach for Solving the Minimum Dominating Set of Queens Problem," Journal of Optimization, Hindawi, vol. 2017, pages 1-8, June.
  • Handle: RePEc:hin:jjopti:5650364
    DOI: 10.1155/2017/5650364
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/7179/2017/5650364.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/7179/2017/5650364.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5650364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marinakis, Yannis & Migdalas, Athanasios & Sifaleras, Angelo, 2017. "A hybrid Particle Swarm Optimization – Variable Neighborhood Search algorithm for Constrained Shortest Path problems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 819-834.
    2. Ellips Masehian & Hossein Akbaripour & Nasrin Mohabbati-Kalejahi, 2013. "Landscape analysis and efficient metaheuristics for solving the n-queens problem," Computational Optimization and Applications, Springer, vol. 56(3), pages 735-764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nuño, Juan Carlos & Muñoz, Francisco J., 2020. "The partial visibility curve of the Feigenbaum cascade to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingchun Liu & Feihong Gu & Yuanzhi Zhang, 2017. "Ride Comfort Optimization of In-Wheel-Motor Electric Vehicles with In-Wheel Vibration Absorbers," Energies, MDPI, vol. 10(10), pages 1-21, October.
    2. Buu-Chau Truong & Kim-Hung Pho & Van-Buol Nguyen & Bui Anh Tuan & Wing-Keung Wong, 2019. "Graph Theory And Environmental Algorithmic Solutions To Assign Vehicles Application To Garbage Collection In Vietnam," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(3), pages 1-35, September.
    3. Amalia Utamima & Torsten Reiners & Amir H. Ansaripoor, 2022. "Evolutionary neighborhood discovery algorithm for agricultural routing planning in multiple fields," Annals of Operations Research, Springer, vol. 316(2), pages 955-977, September.
    4. Mingchun Liu & Feihong Gu & Juhua Huang & Changjiang Wang & Ming Cao, 2017. "Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor," Energies, MDPI, vol. 10(12), pages 1-23, December.
    5. Md. Anisul Islam & Yuvraj Gajpal, 2021. "Optimization of Conventional and Green Vehicles Composition under Carbon Emission Cap," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    6. Li, Na & Pan, Jie & Xie, Xiaoqing, 2020. "Operational decision making for a referral coordination alliance- When should patients be referred and where should they be referred to?," Omega, Elsevier, vol. 96(C).
    7. Xu Zhang & Pan Guo & Hua Zhang & Jin Yao, 2020. "Hybrid Particle Swarm Optimization Algorithm for Process Planning," Mathematics, MDPI, vol. 8(10), pages 1-22, October.
    8. Chih, Mingchang, 2023. "Stochastic stability analysis of particle swarm optimization with pseudo random number assignment strategy," European Journal of Operational Research, Elsevier, vol. 305(2), pages 562-593.
    9. Xiaodan Wu & Ruichang Li & Chao-Hsien Chu & Richard Amoasi & Shan Liu, 2022. "Managing pharmaceuticals delivery service using a hybrid particle swarm intelligence approach," Annals of Operations Research, Springer, vol. 308(1), pages 653-684, January.
    10. Elías Escobar-Gómez & J.L. Camas-Anzueto & Sabino Velázquez-Trujillo & Héctor Hernández-de-León & Rubén Grajales-Coutiño & Eduardo Chandomí-Castellanos & Héctor Guerra-Crespo, 2019. "A Linear Programming Model with Fuzzy Arc for Route Optimization in the Urban Road Network," Sustainability, MDPI, vol. 11(23), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjopti:5650364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.