IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/6382926.html
   My bibliography  Save this article

Modelling the Impact of Government Policies on Import on Domestic Price of Indian Gold Using ARIMA Intervention Method

Author

Listed:
  • Jyothi Unnikrishnan
  • Kodakanallur Krishnaswamy Suresh

Abstract

The study attempts to determine the impact of government policies of import of gold in India on the domestic price of gold during 2013 using Autoregressive Integrated Moving Average (ARIMA) intervention model. 2013 was an amazing year for Indian gold market where the price had reached its zenith. In April 2013, to curb a record trade deficit, India imposed an import duty of 10 percent on gold and tied imports for domestic consumption to exports, creating scarce supply of the yellow metal and boosting premiums to curtail the Current Account Deficit (CAD). The objective of the paper is to model the impact of this intervention by the government on the domestic price of Indian gold. Suitable ARIMA model is fit on the preintervention period and thereafter the effects of the interventions are analysed. The results indicate that ARIMA is the most suitable model during preintervention period. Intervention analysis reveals that there is significant decrease in domestic price of gold by 56% from 2013. The model may be used by policymakers to analyse the future of gold before framing regulations and policies.

Suggested Citation

  • Jyothi Unnikrishnan & Kodakanallur Krishnaswamy Suresh, 2016. "Modelling the Impact of Government Policies on Import on Domestic Price of Indian Gold Using ARIMA Intervention Method," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-6, September.
  • Handle: RePEc:hin:jijmms:6382926
    DOI: 10.1155/2016/6382926
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2016/6382926.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2016/6382926.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/6382926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bianchi, Lisa & Jarrett, Jeffrey & Choudary Hanumara, R., 1998. "Improving forecasting for telemarketing centers by ARIMA modeling with intervention," International Journal of Forecasting, Elsevier, vol. 14(4), pages 497-504, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Jian & Ding, Jing & Zhao, Laijun & Zhu, Di & Li, Lei, 2022. "An option pricing model based on a renewable energy price index," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    2. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    3. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    4. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    5. Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder & Makkhan, Sidhu Jitendra Singh, 2020. "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    7. Haipeng Shen & Jianhua Z. Huang, 2008. "Interday Forecasting and Intraday Updating of Call Center Arrivals," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 391-410, July.
    8. James W. Taylor, 2008. "A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center," Management Science, INFORMS, vol. 54(2), pages 253-265, February.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
    11. Nagaraj Naik & Biju R. Mohan, 2021. "Stock Price Volatility Estimation Using Regime Switching Technique-Empirical Study on the Indian Stock Market," Mathematics, MDPI, vol. 9(14), pages 1-18, July.
    12. EMERSON Abraham Jackson, 2018. "Comparison Between Static And Dynamic Forecast In Autoregressive Integrated Moving Average For Seasonally Adjusted Headline Consumer Price Index," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 70(1), pages 53-65, August.
    13. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    14. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    15. Chai, Jian & Zhang, Zhong-Yu & Wang, Shou-Yang & Lai, Kin Keung & Liu, John, 2014. "Aviation fuel demand development in China," Energy Economics, Elsevier, vol. 46(C), pages 224-235.
    16. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    17. Ho, Anson T.Y. & Morin, Lealand & Paarsch, Harry J. & Huynh, Kim P., 2022. "A flexible framework for intervention analysis applied to credit-card usage during the coronavirus pandemic," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1129-1157.
    18. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    19. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    20. Ray, Mrinmoy & Rai, Anil & Singh, K.N. & V., Ramasubramanian & Kumar, Amrender, 2017. "Technology forecasting using time series intervention based trend impact analysis for wheat yield scenario in India," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 128-133.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:6382926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.