IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7379512.html
   My bibliography  Save this article

Regression and ANN Models for Electronic Circuit Design

Author

Listed:
  • M. I. Dieste-Velasco
  • M. Diez-Mediavilla
  • C. Alonso-Tristán

Abstract

This paper presents a methodology to design and to predict the behaviour of electronic circuits, which combines artificial neural networks and design of experiments. This methodology can be used to model output variables in electronic circuits either with similar features to the circuit configuration that is analysed in this study or with more complex configurations in order to improve the process of electronic circuit design.

Suggested Citation

  • M. I. Dieste-Velasco & M. Diez-Mediavilla & C. Alonso-Tristán, 2018. "Regression and ANN Models for Electronic Circuit Design," Complexity, Hindawi, vol. 2018, pages 1-9, July.
  • Handle: RePEc:hin:complx:7379512
    DOI: 10.1155/2018/7379512
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/7379512.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/7379512.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/7379512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng, Huaiwu & Liu, Fangrui & Yang, Xiaofeng, 2013. "A hybrid strategy of short term wind power prediction," Renewable Energy, Elsevier, vol. 50(C), pages 590-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malinka Ivanova & Mariana Durcheva, 2023. "M-Polar Fuzzy Graphs and Deep Learning for the Design of Analog Amplifiers," Mathematics, MDPI, vol. 11(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    2. Athraa Ali Kadhem & Noor Izzri Abdul Wahab & Ishak Aris & Jasronita Jasni & Ahmed N. Abdalla, 2017. "Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network," Energies, MDPI, vol. 10(11), pages 1-17, October.
    3. Vadim Manusov & Pavel Matrenin & Muso Nazarov & Svetlana Beryozkina & Murodbek Safaraliev & Inga Zicmane & Anvari Ghulomzoda, 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    4. Bigdeli, Nooshin & Afshar, Karim & Gazafroudi, Amin Shokri & Ramandi, Mostafa Yousefi, 2013. "A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 20-29.
    5. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    6. Yagang Zhang & Jingyun Yang & Kangcheng Wang & Yinding Wang, 2014. "Lorenz Wind Disturbance Model Based on Grey Generated Components," Energies, MDPI, vol. 7(11), pages 1-16, November.
    7. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    8. Gyeongmin Kim & Jin Hur, 2021. "A Short-Term Power Output Forecasting Based on Augmented Naïve Bayes Classifiers for High Wind Power Penetrations," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
    9. Sun, Fei & Jin, Tongdan, 2022. "A hybrid approach to multi-step, short-term wind speed forecasting using correlated features," Renewable Energy, Elsevier, vol. 186(C), pages 742-754.
    10. Hao, Ying & Dong, Lei & Liao, Xiaozhong & Liang, Jun & Wang, Lijie & Wang, Bo, 2019. "A novel clustering algorithm based on mathematical morphology for wind power generation prediction," Renewable Energy, Elsevier, vol. 136(C), pages 572-585.
    11. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    12. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    13. Liu, Jinqiang & Wang, Xiaoru & Lu, Yun, 2017. "A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system," Renewable Energy, Elsevier, vol. 103(C), pages 620-629.
    14. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    15. Li-Ling Peng & Guo-Feng Fan & Min-Liang Huang & Wei-Chiang Hong, 2016. "Hybridizing DEMD and Quantum PSO with SVR in Electric Load Forecasting," Energies, MDPI, vol. 9(3), pages 1-20, March.
    16. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    17. Shukur, Osamah Basheer & Lee, Muhammad Hisyam, 2015. "Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA," Renewable Energy, Elsevier, vol. 76(C), pages 637-647.
    18. Gualtieri, Giovanni, 2015. "Surface turbulence intensity as a predictor of extrapolated wind resource to the turbine hub height," Renewable Energy, Elsevier, vol. 78(C), pages 68-81.
    19. Liu, Y. & Li, Y.P. & Huang, G.H. & Lv, J. & Zhai, X.B. & Li, Y.F. & Zhou, B.Y., 2023. "Development of an integrated model on the basis of GCMs-RF-FA for predicting wind energy resources under climate change impact: A case study of Jing-Jin-Ji region in China," Renewable Energy, Elsevier, vol. 219(P2).
    20. Ouyang, Tinghui & Zha, Xiaoming & Qin, Liang & Xiong, Yi & Huang, Heming, 2017. "Model of selecting prediction window in ramps forecasting," Renewable Energy, Elsevier, vol. 108(C), pages 98-107.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7379512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.