IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6582405.html
   My bibliography  Save this article

Adaptive Fixed-Time Sliding Mode Control for Uncertain Twin-Rotor System with Experimental Validation

Author

Listed:
  • Linwu Shen
  • Qiang Chen
  • Meiling Tao
  • Xiongxiong He

Abstract

This paper proposes an adaptive fixed-time control scheme for twin-rotor systems subject to the inertia uncertainties and external disturbances. First of all, a fixed-time sliding mode surface is constructed and the corresponding controller is developed such that the fixed-time uniform ultimate boundedness of the sliding variable and tracking error could be guaranteed simultaneously, and the setting time is independent of the initial values. The adaptive update laws are developed to estimate the upper bounds of the lumped uncertainties and external disturbances such that no prior knowledge on the system uncertainties and disturbances is required. Finally, a twin-rotor platform is constructed to verify the effectiveness of proposed scheme. Comparative results show better position tracking performance of the proposed control scheme.

Suggested Citation

  • Linwu Shen & Qiang Chen & Meiling Tao & Xiongxiong He, 2019. "Adaptive Fixed-Time Sliding Mode Control for Uncertain Twin-Rotor System with Experimental Validation," Complexity, Hindawi, vol. 2019, pages 1-11, October.
  • Handle: RePEc:hin:complx:6582405
    DOI: 10.1155/2019/6582405
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6582405.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6582405.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6582405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhongtian Chen & Qiang Chen & Xiongxiong He & Mingxuan Sun, 2018. "Adaptive Finite-Time Command Filtered Fault-Tolerant Control for Uncertain Spacecraft with Prescribed Performance," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    2. Fang, Liandi & Ma, Li & Ding, Shihong & Zhao, Dean, 2019. "Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 63-79.
    3. Ruisheng Sun & Jing Na & Bin Zhu, 2018. "Robust approximation-free prescribed performance control for nonlinear systems and its application," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(3), pages 511-522, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei, Keqi & Ding, Shihong, 2022. "Output-feedback finite-time stabilization of a class of constrained planar systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    4. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    5. Chao Ming & Ruisheng Sun & Xiaoming Wang, 2018. "Velocity Control Based on Active Disturbance Rejection for Air-Breathing Supersonic Vehicles," Complexity, Hindawi, vol. 2018, pages 1-11, May.
    6. Wang, Yingchun & Zhang, Jiaxin & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    7. Mei, Keqi & Ma, Li & He, Runxin & Ding, Shihong, 2020. "Finite-time controller design of multiple integrator nonlinear systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    8. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    9. Liu, Hui & Li, Xiaohua, 2023. "A prescribed-performance-based adaptive finite-time tracking control scheme circumventing the dependence on the system initial condition," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    10. Hasnat Bin Tariq & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Maximum-Likelihood-Based Adaptive and Intelligent Computing for Nonlinear System Identification," Mathematics, MDPI, vol. 9(24), pages 1-23, December.
    11. Du, Haibo & Yu, Bo & Wei, Jiajia & Zhang, Jun & Wu, Di & Tao, Weiqing, 2020. "Attitude trajectory planning and attitude control for quad-rotor aircraft based on finite-time control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    12. Zhongtian Chen & Qiang Chen & Xiongxiong He & Mingxuan Sun, 2018. "Adaptive Finite-Time Command Filtered Fault-Tolerant Control for Uncertain Spacecraft with Prescribed Performance," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    13. Li, Ping & Song, Zhibao & Wang, Zhen & Liu, Wenhui, 2020. "Fixed-time consensus for disturbed multiple Euler-Lagrange systems with connectivity preservation and quantized input," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    14. Yao, Wei & Wang, Chunhua & Sun, Yichuang & Zhou, Chao & Lin, Hairong, 2020. "Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    15. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Huang, Tingwen & Wen, Shiping, 2020. "Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    16. Jia, Jinping & Dai, Hao & Li, Li & Zhang, Fandi, 2021. "Global sampled-data stabilization for a class of nonlinear systems with arbitrarily long input delays via a multi-rate control algorithm," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    17. Dapeng Wang & Shaogang Liu & Youguo He & Jie Shen, 2021. "Barrier Lyapunov Function-Based Adaptive Back-Stepping Control for Electronic Throttle Control System," Mathematics, MDPI, vol. 9(4), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6582405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.