IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320304422.html
   My bibliography  Save this article

Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations

Author

Listed:
  • Yao, Wei
  • Wang, Chunhua
  • Sun, Yichuang
  • Zhou, Chao
  • Lin, Hairong

Abstract

Due to instability being induced easily by parameter disturbances of network systems, this paper investigates the multistability of memristive Cohen-Grossberg neural networks (MCGNNs) under stochastic parameter perturbations. It is demonstrated that stable equilibrium points of MCGNNs can be flexibly located in the odd-sequence or even-sequence regions. Some sufficient conditions are derived to ensure the exponential multistability of MCGNNs under parameter perturbations. It is found that there exist at least (w+2)l (or (w+1)l) exponentially stable equilibrium points in the odd-sequence (or the even-sequence) regions. In the paper, two numerical examples are given to verify the correctness and effectiveness of the obtained results.

Suggested Citation

  • Yao, Wei & Wang, Chunhua & Sun, Yichuang & Zhou, Chao & Lin, Hairong, 2020. "Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304422
    DOI: 10.1016/j.amc.2020.125483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Manchun & Liu, Yunfeng & Xu, Desheng, 2019. "Multistability analysis of delayed quaternion-valued neural networks with nonmonotonic piecewise nonlinear activation functions," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 229-255.
    2. Fang, Liandi & Ma, Li & Ding, Shihong & Zhao, Dean, 2019. "Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 63-79.
    3. Nie, Xiaobing & Liang, Jinling & Cao, Jinde, 2019. "Multistability analysis of competitive neural networks with Gaussian-wavelet-type activation functions and unbounded time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 449-468.
    4. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Guo, Ying & Xiao, Qimei & Yuan, Shuai, 2019. "Influence of multiple time delays on bifurcation of fractional-order neural networks," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 565-582.
    5. Liang Liu & Zhandong Yu & Qi Zhou & Hamid Reza Karimi, 2013. "State-Feedback Stabilization for a Class of Stochastic Feedforward Nonlinear Time-Delay Systems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, December.
    6. Fei Yu & Li Liu & Shuai Qian & Lixiang Li & Yuanyuan Huang & Changqiong Shi & Shuo Cai & Xianming Wu & Sichun Du & Qiuzhen Wan, 2020. "Chaos-Based Application of a Novel Multistable 5D Memristive Hyperchaotic System with Coexisting Multiple Attractors," Complexity, Hindawi, vol. 2020, pages 1-19, March.
    7. Nina Huo & Yongkun Li, 2018. "Antiperiodic Solutions for Quaternion-Valued Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses," Complexity, Hindawi, vol. 2018, pages 1-12, October.
    8. Lin, Hairong & Wang, Chunhua, 2020. "Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Fei & Shen, Hui & Zhang, Zinan & Huang, Yuanyuan & Cai, Shuo & Du, Sichun, 2021. "Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Zhou, Chao & Wang, Chunhua & Yao, Wei & Lin, Hairong, 2022. "Observer-based synchronization of memristive neural networks under DoS attacks and actuator saturation and its application to image encryption," Applied Mathematics and Computation, Elsevier, vol. 425(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Siyi & Li, Hua & Chen, Xiaofeng & Lin, Dongyuan, 2023. "Multistability analysis of quaternion-valued neural networks with cosine activation functions," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    2. Mei, Keqi & Ding, Shihong, 2022. "Output-feedback finite-time stabilization of a class of constrained planar systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    3. Yao, Hejun & Gao, Fangzheng & Huang, Jiacai & Wu, Yuqiang, 2021. "Global prescribed-time stabilization via time-scale transformation for switched nonlinear systems subject to switching rational powers," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    4. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Adhira, B. & Nagamani, G., 2023. "Exponentially finite-time dissipative discrete state estimator for delayed competitive neural networks via semi-discretization approach," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Xu, Changjin & Liu, Zixin & Liao, Maoxin & Li, Peiluan & Xiao, Qimei & Yuan, Shuai, 2021. "Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 471-494.
    8. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    9. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    10. Zhang, Yan & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2023. "Multistability of almost periodic solution for Clifford-valued Cohen–Grossberg neural networks with mixed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    12. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    13. Dutta, Maitreyee & Roy, Binoy Krishna, 2021. "A new memductance-based fractional-order chaotic system and its fixed-time synchronisation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Grienggrai Rajchakit & Ramalingam Sriraman & Chee Peng Lim & Panu Sam-ang & Porpattama Hammachukiattikul, 2021. "Synchronization in Finite-Time Analysis of Clifford-Valued Neural Networks with Finite-Time Distributed Delays," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    15. Li, Donghua & Zhang, Zhengqiu & Zhang, Xiaoluan, 2020. "Periodic solutions of discrete-time Quaternion-valued BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    17. Fei Yu & Wuxiong Zhang & Xiaoli Xiao & Wei Yao & Shuo Cai & Jin Zhang & Chunhua Wang & Yi Li, 2023. "Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    18. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    19. Wang, Yingchun & Zhang, Jiaxin & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Finite-time adaptive neural control for nonstrict-feedback stochastic nonlinear systems with input delay and output constraints," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    20. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.