IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2015i1p30-36.html
   My bibliography  Save this article

Прогнозирование Когерентных Разрывов Волатильности // Forecasting Coherent Volatility Breakouts

Author

Listed:
  • A. Didenko S.

    (Financial university)

  • M. Dubovikov M.

    («INDEX-XX» company)

  • B. Poutko A.

    (Financial university)

  • А. Диденко С.

    (Финансовый университет)

  • М. Дубовиков М.

    (ОАО «ИНДЕКС-XX»)

  • Б. Путко А.

    (Финансовый университет)

Abstract

The paper develops an algorithm for making long-term (up to three months ahead) predictions of volatility reversals based on long memory properties of financial time series. The approach for computing fractal dimension using sequence of the minimal covers with decreasing scale (proposed in [1]) is used to decompose volatility into two0dynamic components: specific A (t ) and structural Hµ(t ). We introduce two separate models forA (t ) and Hµ(t ), based on different principles and capable of catching long uptrends in volatility. To test statistical significanceof its abilities we introduce several estimators of conditional and unconditional probabilities of reversals in observed and predicted dynamic components of volatility. Our results could be used for forecasting points of market transition to an unstable state. Разработана методика долгосрочного (до нескольких месяцев) прогнозирования разворотной динамики волатильности с использованием свойств длинной памяти финансовых временных рядов. Предложенный в [1] алгоритм вычисления фрактальной размерности через покрытие предфракталами используется для декомпозиции волатильности на удельную0A (t) и структурную Hµ(t). Предложены модели динамических компонентволатильности, способные предсказывать длинные восходящие в ней тренды. Для проверки статистическойзначимости прогнозов введены функции оценки условных и безусловных вероятностей для наблюдаемых и прогнозируемых компонент. Наши результаты могут быть использованы для предсказания точек перехода рынка в нестабильное состояние.

Suggested Citation

  • A. Didenko S. & M. Dubovikov M. & B. Poutko A. & А. Диденко С. & М. Дубовиков М. & Б. Путко А., 2015. "Прогнозирование Когерентных Разрывов Волатильности // Forecasting Coherent Volatility Breakouts," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, issue 1, pages 30-36.
  • Handle: RePEc:scn:financ:y:2015:i:1:p:30-36
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/109/108.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Putko, Boris & Didenko, Alexander & Dubovikov, Mikhail, 2014. "The model of volatility of the exchange rate (RUR/USD), based on the fractal characteristics of time series," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 36(4), pages 79-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Didenko Alexander & Dubovikov Mikhail & Poutko Boris, 2015. "Forecasting coherent volatility breakouts," Вестник Финансового университета, CyberLeninka;Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет), issue 1 (85), pages 30-36.
    2. repec:scn:financ:y:2015:i:1:p:30-36 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2015:i:1:p:30-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.